

PHASE II LIMITED SUBSURFACE INVESTIGATION FORMER AEP TANNER'S CREEK GENERATING STATION 800 AEP DRIVE LAWRENCEBURG, INDIANA 47025

ATC PROJECT NO. 170EM00522

December 4, 2018

Prepared For:

Ms. Andrea L. Hermer Ports of Indiana 150 W. Market St., Suite 100 Indianapolis, Indiana 46204

December 4, 2018

Ms. Andrea L. Hermer Ports of Indiana 150 W. Market St., Suite 100 Indianapolis, Indiana 46204

Re: Phase II Limited Subsurface Investigation

Former AEP Tanner's Creek Generating Station

800 AEP Drive

Lawrenceburg, Indiana 47025 ATC Project No.: 170EM00522 Phone +1 317 849 4990

+1 317 849 4278

ATC Group Services, LLC

7988 Centerpoint Dr. Suite 100

Indianapolis, IN 46256

www.atcgroupservices.com

Dear Ms. Hermer:

ATC Group Services, LLC (ATC) is pleased to provide Ports of Indiana (Client) with this report documenting a Phase II Limited Subsurface Investigation (LSI) that was conducted at the former AEP Tanner's Creek Generating Station located at 800 AEP Drive in Lawrenceburg, Indiana. The work performed, findings and conclusions of the LSI are provided in this submittal.

We appreciate the opportunity to be of service to you on this project. Please contact either of the undersigned should you have any questions, comments or concerns.

Sincerely,

Joshua Price, LEED AP **Project Scientist**

Direct Line 970-556-4834

Email: joshua.price@atcqs.com

Julie Crewe, LPG (IN #2531) Senior Project Geologist Direct Line 317-579-4020

Email: julie.crewe@atcgs.com

Enc: Phase II Limited Subsurface Investigation

Table of Contents

1	Intro	duction	3
	1.1	Background Information	3
	1.2	Phase II Limited Subsurface Investigation Summary	4
2	Site (Characteristics	6
	2.1	Site Description	6
	2.2	Hydrogeologic Setting	6
3	Work	c Performed	7
	3.1	Drilling Activities	7
	3.2	Soil Investigation	7
	3.3	Groundwater/Wastewater Investigation	8
4	Findi	ings	10
	4.1	Hydrogeology and Soil Screening Results	10
	4.2	Soil Analytical Results	10
	4.3	Groundwater Analytical Results	12
	4.4	Public Water Supply Results	13
5	Conc	clusions	14
6	Quali	ifications	16

Tables

Table 1A - Table 1B - Table 1C - Table 1D - Table 1E - Table 1F - Table 1G -	Soil Analytical Summary (VOCs) Soil Analytical Summary (SVOCs) Soil Analytical Summary (Metals) Soil Analytical Summary (PCBs) Soil Analytical Summary (Fluoride) Soil Analytical Summary (Radium) Soil Analytical Summary (PAHs)
Table 1H -	Soil Analytical Summary (6/2018 Sampling Event)
Table 1I -	Soil Arsenic Concentrations Exceeding IDEM RCG Com/Ind Screening Levels
Table 2A -	Groundwater Analytical Summary (VOCs)
Table 2B -	Groundwater/Surface Water Analytical Summary (Metals)
Table 2C -	Groundwater Analytical Summary (Fluoride)
Table 2D -	Groundwater Analytical Summary (Radium)
Table 2E -	Public Well Supply Analytical Results (Metals)
Table 2F -	Groundwater Analytical Summary (6/2018 Sampling Event)

Figures

Figure 1 -	Vicinity Map
Figure 2 -	Site Plan, Area 1
Figure 3 -	Site Plan, Area 2

Figure 4 - Soil Analytical Map, Area 1 Figure 5 - Soil Analytical Map, Area 2

Figure 6 - Groundwater Analytical Map, Area 1 Figure 7 - Groundwater Analytical Map, Area 2

Figure 8 - Potentiometric Map, Area 1 Figure 9 - Potentiometric Map, Area 2

Appendices

Appendix A Soil Boring Logs
Appendix B Low-Flow Groundwater Sampling Logs

Appendix C Soil and Groundwater Analytical Reports
Appendix D Public Water Supply Well Analytical Results

Appendix E Boring Locations and Analyses

1 Introduction

ATC Group Services, LLC (ATC) was retained by the Ports of Indiana (POI) to perform a Phase II Limited Subsurface Investigation (LSI), located at the former AEP Tanner's Creek Generating Station located at 800 AEP Drive in Lawrenceburg, Indiana, herein referred to as ("the Site"). A Vicinity Map is included as **Figure 1** and a Site Plan is included as **Figure 2**. Additionally, a labelled topographic map provided by American Electric Power (AEP) is provided with **Figure 1**.

1.1 Background Information

The former AEP Tanner's Creek Generating Station consists of approximately 732.9 acres of land and is located along the northwest bank of the Ohio River bordering Indiana and Ohio. The facility consists of vacant fields, coal ash ponds, and the former electrical power generating station facility, which was actively being demolished during initial field activities. A rail line crosses through the approximate center of the facility, running east to west. Tanners Creek runs through the facility from the northeast to the south.

For the purposes of this Phase II ESA, the Site was divided into two areas: Area 1 and Area 2. Area 1 is located on the east side of Tanner's Creek. Area 1 is approximately 275 acres and includes the main ash pond, bottom ash pond located northeast of the main ash pond, multiple buildings, boiler slag pond located northeast of the former plant area, various equipment, a water intake, three outfalls, and various tanks and waste storage areas associated with facility operations. Area 2 is approximately 458 acres, is located on the west side of Tanners Creek, and includes a fly ash pond and a Type I landfill.

The objective of this investigation was to investigate the *recognized environmental conditions* (*RECs*) identified in a Phase I Environmental Site Assessment (Phase I) completed by Keramida, Inc., dated December 15, 2017 and a Phase I ESA Update performed by ATC, dated May 2, 2018. Multiple recognized environmental conditions were identified at the Site, and are presented in tabular form below:

Area of Interest	Name	Description
1	Coal Ash Ponds	Two coal ash ponds exist on-Site: Main Ash Pond, and a Bottom Ash Pond. Potential contaminants may include the following constituents: metals and semi-volatile organic compounds (SVOCs).
2	Coal Pile Staging	A coal pile staging area was identified southwest of the generating station. An additional area, leased by Gibbco, was used as a boiler slag staging area and a boiler slag waste pond. Potential contaminants may include: SVOCs and metals.
3	Unregulated Heating Oil Tanks	Five tanks were removed from the Site in 1994. No closure documentation was provided regarding tank removal. Potential contaminants may include: SVOCs and VOCs.
4	Leaking Underground Storage Tanks (LUST)	Three LUST incidents were reported by the Indiana Department of Environmental Management (IDEM) in 1989, 1994, and 1995. All reported incidents have since received a No Further Action (NFA) status. A fourth LUST incident was reported and was related to closure of a used oil sump. No additional information was reported as related to the fourth event. Based on the new IDEM Closure Guidance and screening levels, potential contaminants associated with these areas may include: VOCs, SVOCs, and metals.
5	Leaking Fuel Oil / Chemical Metal Waste Cleaning Aboveground Storage Tanks (ASTs)	According to the Phase I, fuel oil storage and chemical waste cleaning tanks were formerly located in a lined pit. The pit is currently empty and the liner was noted by Keramida to be in poor condition. No AST removal documentation was available for review. Potential contaminants may include: SVOCs, polychlorinated biphenyls (PCBs), VOCs, and metals.

Area of Interest	Name	Description
6	Buried Construction Demolition Material	According to the Phase I, a figure from a 2014 NPDES permit indicated an area described as having buried construction demolition waste. No indication of what type of materials were disposed and the area was noted to be closed (or buried) on or before 1980. Potential contamination is unknown but could include a variety of parameters such as PCBs, VOCs, SVOCs, metals, and asbestos.
7	Waste Oil / Solvent Areas	The 2014 NPDES figure also noted an area used to store waste oil and solvents. Keramida was not able to access this area due to demolition activities. Potential contaminants may include: SVOCs, VOCs, PCBs, and metals.
8	PCB Separator Tank / Hydraulic Equipment	Prior Phase I ESAs identified a PCB separator tank southwest of the generating station, PCBs in the transformer/rectifier sets, and hydraulic powered conveyers. Potential contaminants could include: SVOCs, VOCs, lead, and PCBs.
9	Soil / Pavement Staining	During the prior Phase I site walk, Keramida noted multiple areas of staining on the soil and paved surfaces. These areas will be verified during ATC's site reconnaissance. Potential contaminants likely include: SVOCs and VOCs.
10	Demolition Activities (ongoing)	The ongoing demolition activities being performed on-Site could present the potential for buried drums, ASTs, or PCB and/or asbestos contaminated materials.

In addition, the past use of the Site as a coal-fired electrical generating station represents a *REC*. Potential contaminants other than those listed in the table above could include dioxins and furans.

The objectives of this Phase II was to further evaluate the identified *RECs* by the collection and analysis of soil, groundwater, and wastewater discharge samples at the Site. Additionally, results from public water supply samples were reviewed in order to assess if prior Site activities have impacted the wellfield located to the northwest of the Fly Ash Pond and Type I landfill. Prior to subsurface investigation activities, a ground penetrating radar (GPR) assessment of the Site was performed in order to locate/confirm on-Site utilities and the presence of any potential UST locations.

1.2 Phase II Limited Subsurface Investigation Summary

ATC completed Phase II LSI activities at the Site from January 17, 2018 until May 2, 2018. The activities included the following:

- Clearing of utilities for boring locations;
- The advancement of 75 soil borings for the purposes of soil sample collection and subsequent laboratory analysis;
- The installation of 34 temporary monitoring wells for the purposes of groundwater sample collection and subsequent laboratory analysis;
- Collection of three surface water samples from the Main Ash Pond and the leachate and overflow ponds southwest of the landfill and near Outfall 005.

During the initial Phase II LSI sampling activities, not all areas of the Site were accessible for investigation. Specifically, much of the former plant area was actively being razed and demolition activities and construction debris limited ATC's access to these areas. Additionally, some areas north of the Fly Ash Pond in Area 2 were not accessible due to flooding.

ATC completed additional soil and groundwater sampling activities at the Site from June 16, 2018 until June 25, 2018 following plant demolition activities in Area 1 and after floodwaters retreated in Area 2. The additional Phase II LSI activities included the following:

- Clearing of utilities for boring locations
- The advancement of 13 soil borings for the purposes of soil sample collection and subsequent laboratory analysis;
- The installation of eight temporary monitoring wells for the purposes of groundwater sample collection and subsequent laboratory analysis.

2 Site Characteristics

2.1 Site Description

The Site is located at 800 AEP Drive, Lawrenceburg, Indiana in an area that is primarily characterized by industrial and commercial uses. For the purposes of this project, the Site was divided into Area 1 and Area 2. Area 1 consists of the former infrastructure used for power generation, including the former power generating station. The former power generating station was undergoing demolition during the initial Phase II LSI activities. Area 1 is located on the east side of Tanner's Creek. Area 2 consists of a fly ash pond, a type 1 landfill, and vacant land. Area 2 is located on the west side of Tanner's Creek. A Site Plan is provided as **Figure 2**.

2.2 Hydrogeologic Setting

Runoff at the property is controlled by infiltration into the ground surface and overland flow. Tanner's Creek and the Ohio River drain the study area. Tanner's Creek flows through the approximate center of the property and discharges into the Ohio River. The Ohio River adjoins the property to the southeast.

Regional groundwater flow direction is generally influenced by major hydrogeologic features such as a river or lake. Surface and/or bedrock topography may also influence regional groundwater flow direction. The available hydrogeologic information indicates that local groundwater flow is south. Regional groundwater flow is considered to be southeast toward the Ohio River. Local geologic features may cause local groundwater flow direction to differ from the regional flow direction. Regional groundwater flow direction at the property is interpreted based on a review of the Potentiometric Surface Map of the Unconsolidated Aquifers of Dearborn, Indiana (Cox, 2017).

Groundwater elevations were calculated using well survey data and depth to groundwater measurements. During this assessment, the groundwater elevations ranged from 433.8 feet above mean sea level (amsl) to 483.9 feet amsl. In Area 1, it appears that the groundwater flow direction is to the southeast towards the Ohio River; however, based on the historical data provided by the client, this flow direction is reversed to the historical observed flow direction to the northwest. Conversely, groundwater flow direction in Area 2 appears to be primarily to the northwest which is consistent with the historical flow direction data. Based on this assessment and the provided historical data, it appears that the local groundwater flow direction is likely significantly influenced by the surface water elevation of Tanner's Creek and the Ohio River. The extraction of groundwater from the nearby public water supply wellfield in addition to the decommissioning activities that were ongoing during this assessment, may have influence the flow direction, thus creating a complex flow regime as it relates to the local hydrogeology in the vicinity of the Site.

Soil samples collected from borings advanced at the Site demonstrated variability in soil types and layer depths. Generally, soil samples collected from the borings advanced at the Site indicated a surface layer of coal ash and/or fill material in Area 1, and a surface layer of gravel or topsoil in Area 2. The coal ash/fill material layer in Area 1 ranged in depths of 0.5 feet below ground surface (ft-bgs) to 40 ft-bgs. The coal ash/fill material layer was underlain with clay, sand, silty sand, and/or gravel. The surface layer in Area 2 was typically underlain with a clay layer that extended to approximately 36 to 50 ft-bgs. The clay layer was underlain with a silty sand layer.

3 Work Performed

3.1 Drilling Activities

Prior to the start of both sampling events, underground utilities were marked by the Indiana Underground Plant Protection Service. ATC reviewed the location of marked underground utilities and moved soil boring locations as necessary to avoid potentially contacting underground utilities. Additionally, a Site-specific health and safety plan was prepared and reviewed with all field personnel before commencing with the field activities.

Prior to drilling activities, a private utility locate was also conducted to clear boring locations. The soil borings were then advanced and soil samples collected continuously in two foot intervals to the desired depth using a track mounted 8040DT Geoprobe® drill rig equipped with 4-foot long, nominal 2-inch diameter Macro core® samplers. The Macro-core samplers were equipped with new plastic internal liners prior to collection of each sample.

The drilling activities included the advancement of 75 soil borings to a maximum depth of up to approximately 48 feet below ground surface (ft-bgs) or until groundwater was encountered (January 17, 2018 through May 2, 2018). Drilling activities from June 16, 2018 through June 25, 2018 included the advancement of 13 soil borings to a maximum depth of 50 ft-bgs or until groundwater was encountered. Additionally, groundwater samples were collected from 42 of the 88 total soil borings. The soil borings and temporary well locations are illustrated on **Figure 2** and listed in tabular form in **Appendix E**.

3.2 Soil Investigation

For both sampling events, the soil samples were collected in plastic liners that were retrieved at the ground surface. When the Geoprobe® sample liners were opened, a field geologist collected a subsample from each 2 ft interval for potential laboratory analysis using Terra Core Samplers (US EPA Method 5035A – Indiana Modified) and laboratory-supplied 4 ounce jars. A second sub-sample (field aliquot) was placed into resealable plastic bags to be analyzed in the field using a flame-ionization detector (FID) and a photo-ionization detector (PID), which measures total photo-ionizable vapors (TPVs).

A field geologist classified each soil sample in accordance with the Unified Soil Classification System (USCS), and visually inspected each soil sample in the field for physical evidence of environmental impact such as staining, odors, free product, etc. Soil boring logs documenting the soil classification and field screening results are provided in **Appendix A**.

Two soil samples per boring were retained for laboratory analysis. The samples retained for analysis included the subsurface sample intervals exhibiting the greatest potential for being impaired (i.e., highest TPV, staining, odors, etc.). If no evidence of impact was observed in the subsurface soil, the samples selected for laboratory analysis were taken near the groundwater table. Soil FID and/or PID screening results are included on the boring/well logs.

Soil samples retained for laboratory analysis were analyzed for some or all of the following parameters:

Fluoride using US EPA SW-846 Method 4500FC¹,

- Hexavalent Chromium (Cr 6+) using US EPA SW-846 Method 7196¹,
- Polychlorinated Biphenyls (PCBs) using US EPA SW-846 Method 8082^{1,2},
- Polynuclear Aromatic Hydrocarbons (PAHs) using 8270 SIM²,
- Metals: Arsenic, Barium, Boron, Beryllium, Cadmium, Chromium (Cr 6+), Copper, Mercury, Molybdenum, Nickel, Lead, Antimony, Selenium, Thallium, Zinc, Manganese, Cobalt, Lithium, Radium, and Fluoride using US EPA SW-846 Methods 6010B, 7196, and 7470²,
- Radium-226 and Radium-228 using US EPA SW-846 Method 901.11,
- RCRA 8 Metals: Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, and Silver using US EPA SW-846 Methods 6010B and 7470,
- Semi-Volatile Organic Compounds (SVOCs) using US EPA SW-846 Method 8270^{1,2},
- Volatile Organic Compounds (VOCs) using US EPA SW-846 Method 8260²,
- Dioxins (CDD) and Furans (CDF) using US EPA SW-846 Method 8280B1.

3.3 **Groundwater/Wastewater Investigation**

Groundwater sampling activities were conducted at the Site between April 24, 2018 and May 2, 2018, and June 22, 2018 and June 25, 2018. Prior to sample collection, depth-to-groundwater was measured and recorded. Depth-to-groundwater was measured to range from 5.0 ft-bgs to 48.0 ft-bgs. Based on the groundwater elevations, it appears the groundwater flow direction is variable across the Site. At the time of this investigation, groundwater flow direction was to the southeast towards the Ohio River in Area 1, while groundwater flow direction in Area 2 appeared to be primarily to the northwest. Groundwater elevations are shown in Figures 8 and 9.

Groundwater samples were collected from a total of 42 temporary wells using low flow/low stress sampling techniques. For each sample location, a pump was gently lowered to approximately the midpoint of the measured groundwater column and the pump was started at an initial flow rate ranging from 50 to 60 milliliters (mL) per cycle with four cycles per minute. After placing the pump at the desired interval within each monitoring well, a minimum of one purging volume (volume of bladder, flow through cell, and tubing) was removed before stabilization parameters were recorded. The water quality parameters used for determining stability and the stability criteria are provided in the table below. In order to determine stability, three consecutive measurements were within the stabilization criteria presented for each parameter. The groundwater sampling log along with low flow sampling logs are provided in **Appendix B**.

Stabilization Parameter	Stabilization Criteria
рН	+/- 0.1
Oxygen-Reduction Potential (ORP)	+/- 10 mev
Temperature	+/- 3%
Dissolved Oxygen	+/- 10%
Conductivity	+/- 3%

¹ Only analyzed for samples collected from Area 1

² Analyzed during both first and second sampling events

In addition to the groundwater samples, ATC attempted to collect samples from the effluent at Outfall 5; however, no discharge was noted during the sampling event. Therefore, ATC collected three grab surface water samples. One surface water sample (SW-1) was collected from the southwest corner of the main ash pond. The subsequent surface water samples (SW-2 and SW-3) were collected near Outfall 005, which is located near the leachate and overflow ponds southwest of the landfill.

For both sampling events, water samples were placed into laboratory supplied sample containers, labeled with a unique identification, placed in a cooler and transported to Pace Analytical laboratory under chain-of-custody controls. Groundwater and surface water samples retained for laboratory analysis were analyzed for some or all of the following parameters:

- Fluoride using US EPA SW-846 Method 4500FC²
- Dissolved and/or Total Metals: Arsenic, Barium, Boron, Beryllium, Cadmium, Chromium (Cr 6+), Copper, Mercury, Molybdenum, Nickel, Lead, Antimony, Selenium, Thallium, Zinc, Manganese, Cobalt, Lithium, Radium, and Fluoride using US EPA SW-846 Methods 6010B, 7196, and 7470,
- PAHs using US EPA SW-846 Method 8270 SIM,
- Polychlorinated Biphenyls (PCBs) using US EPA SW-846 Method 8082³,
- Radium-226 and Radium-228 using US EPA SW-846 Method 901.13,
- RCRA 8 Metals: Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, and Silver using US EPA SW-846 Methods 6010B and 74703⁴,
- Semi-Volatile Organic Compounds (SVOCs) using US EPA SW-846 Method 82703, and
- Volatile Organic Compounds (VOCs) using US EPA SW-846 Method 8260.

Additionally, public water supply wells were sampled within the LMS Well and the Aurora Well by a third party and results were provided by the water utility company. Field measurements were collected for all water samples, and recorded during sampling, and included dissolved oxygen, oxygen reduction potential (ORP), pH, specific conductance, turbidity, and temperature.

_

³ Only analyzed for samples collected from Area 1

⁴ Analyzed during first and second sampling events

4 Findings

4.1 Hydrogeology and Soil Screening Results

Soil samples collected from borings advanced at the Site demonstrated variability in soil types and layer depths. Generally, soil samples collected from the borings advanced at the Site indicated a surface layer of coal ash and/or fill material in Area 1, and a surface layer of gravel or topsoil in Area 2. The coal ash/fill material layer in Area 1 ranged in depths of 0.5 feet below ground surface (ft-bgs) to 40 ft-bgs. The coal ash/fill material layer was underlain with clay, sand, silty sand, or gravel. The surface layer in Area 2 was typically underlain with a clay layer that extended to approximately 36 to 50 ft-bgs. The clay layer was underlain with a loamy sand layer.

The field screening (TPV readings) had results ranging from 0 ppm to 2,450 ppm. The highest TPV reading, 2,450 ppm, was taken from soil boring B-02 (14-15), located in the Gibbco area. No visual staining or free product was observed in any soil samples collected from the Site. The results of the field screening analysis are provided in the boring logs located in **Appendix A**.

4.2 Soil Analytical Results

The soil samples were analyzed within the established holding times using U.S. EPA-approved Methods as described in the EPA publication, Test Methods for Evaluation of Solid Wastes, Physical/Chemical Methods (SW-846, 3rd Edition, Update III). The Method Detection Limits (MDLs) and Estimated Quantification Limits (EQLs) were low enough to determine if the reported contaminants of concern (COC) concentrations, if any, were in excess of the Indiana Department of Environmental Management (IDEM) Remediation Closure Guide (RCG) Screening Levels.

The soil analytical results were compared to the following RCG screening levels (SLs-updated March 2018):

- Direct Contact residential (IDEM RCG RSL),
- Direct Contact commercial/industrial (IDEM RCG CISL),
- Direct Contact excavation (IDEM RCG ESL), and
- Groundwater Soil Migration to Groundwater residential (IDEM RCG MTGSL).

Laboratory soil sample analysis indicated that multiple COCs were detected above the laboratory reporting limits. A number of COCs were also detected at concentrations exceeding the referenced IDEM RCG SLs, and are summarized below. The results of the soil laboratory analysis are depicted on **Figures 4 and 5** and provided in **Tables 1A – 1I**. A copy of the laboratory certificate of analysis is provided in **Appendix C**.

VOCs

Methylene chloride was detected in a soil samples collected from B-14 (28-30) and B-33 (44-45) at concentrations exceeding IDEM RCG MTGSL. None of the other soil samples collected from the Site exhibited VOCs concentrations exceeding applicable IDEM RCG SLs.

SVOCs/PAHs

Several SVOCs/PAHs were detected at concentrations exceeding IDEM RCG MTGSL. Benzo(a)anthracene and Benzo(a)pyrene were detected in soil samples B-4 (18-20) and B-74 (0-2) at concentrations exceeding the IDEM RCG MTGSL. 1-Methylnaphthalene was detected in soil sample B-24 (0-2) at a concentration exceeding IDEM RCG MTGSL. 1-Methylnaphthalene and 2-Methylnaphthalene were detected in soil sample B-82 (6-8) at concentrations exceeding IDEM RCG MTGSLs. Naphthalene was detected in soil samples B-63 (0-2), B-64 (40-42), B-65 (0-2), B-69 (18-20), B-74 (0-2), B-80 (0-2), B-82 (0-2), B-83 (0-2), and B-87 (5-6) at concentrations exceeding IDEM RCG MTGSL. None of the other soil samples collected from the Site exhibited SVOC/PAH concentrations exceeding applicable IDEM RCG SLs.

<u>PCBs</u>

PCB-1242 (Aroclor 1242) was detected in soil samples B-71 (0-2), B-75 (0-2), B-79 (0-2), B-81 (0-2), B-82 (0-2), and B-86 (0-2) at concentrations exceeding IDEM RCG MTGSL. None of the other soil samples collected from the Site contained PCBs at concentrations exceeding applicable IDEM RCG SLs.

Metals

Arsenic, cobalt, selenium, and thallium were detected in soil samples at concentrations exceeding IDEM RCG SLs. Arsenic was detected at concentrations exceeding IDEM RCG MTGSL or IDEM RCG RSL in all samples *except* B-2 (0-2), B-3 (0-2), B-4 (0-2), B-6 (0-2), B-7 (0-2), B-8 (0-2), B-9 (0-2), B-10 (0-2), B-10 (18-20), B-12 (20-22), B-17 (0-2), B-17 (32-43), B-24 (0-2), B-36 (0-2), B-38 (0-2), B-39 (28-30), B-40 (32-34), B-47 (26-28), B-48 (22-24), B-50 (22-24), B-52 (30-32), B-53 (24-26), B-56 (0-2), B-59 (0-2), B-62 (14-16), B-67 (0-2), B-70 (0-2), B-71 (0-2), B-75 (0-2), B-81 (16-18), B-82 (6-8), B-84 (26-28), B-85 (20-22), and B-87 (5-6). Arsenic was detected at concentrations exceeding IDEM RCG CISL for soil samples B-12 (0-2), B-13 (0-2), B-14 (0-2), B-15 (0-2), B-18 (0-2), B-20 (0-2), B-27 (0-2), B-30 (0-2), B-30 (24-25), B-32 (0-2), B-33 (0-2), B-33 (44-45), B-34 (0-2), B-37 (38-40), B-51 (0-2), B-79 (0-2), and B-86 (0-2).

Cobalt was detected at concentrations exceeding IDEM RCG MTGSL for soil samples B-1 (0-2), B-1 (14-16), B-2 (0-2), B-2 (14-15), B-3 (0-2), B-3 (24-25), B-4 (0-2), B-4 (18-20), B-5 (0-2), B-5 (16-18), B-6 (18-20), B-7 (0-2), B-24 (0-2), B-24 (16-18), B-25 (0-2), B-25 (10-12), B-26 (0-2), B-26 (24-26), B-27 (0-2), B-27 (48-50), B-28 (0-2), B-28 (28-30), B-29 (0-2), B-29 (14-16), B-30 (0-2), B-30 (24-25), B-31 (0-2), B-31 (38-40), B-32 (0-2), B-32 (38-40), B-33 (0-2), B-33 (44-45), B-34 (0-2), B-36 (0-2), B-36 (12-14), B-37 (38-40), and B-38 (38-40).

Selenium was detected at concentrations exceeding IDEM RCG MTGSL for soil samples B-18 (26-28), B-28 (0-2), B-30 (0-2), B-33 (0-2), B-34 (0-2), B-74 (0-2), B-75 (0-2), B-79 (0-2), B-79 (6-8), B-80 (0-2), B-81 (0-2), B-82 (0-2), and B-83 (0-2).

Thallium was detected at concentrations exceeding IDEM RCG MTGSL or IDEM RCG RSL for soil samples B-2 (0-2), B-3 (0-2), B-4 (0-2), B-5 (0-2), B-6 (0-2), B-7 (0-2), B-7 (20-22), B-17 (0-2), B-24 (0-2), B-30 (0-2), B-34 (0-2), B-37 (0-2), and B-38 (0-2).

Radium

Soil samples from Area 1 were analyzed for Radium-226 and Radium-228. The US EPA has established a clean-up goal for Radium as five picocuries per gram (pCi/g). Analytical results indicated

the presence of Radium-226 and Radium-228; however, the concentrations were below the established US EPA clean-up goal for soil.

No other analytes were detected in soil samples at concentrations exceeding applicable IDEM RCG SLs.

4.3 Groundwater Analytical Results

The groundwater samples were analyzed within the established holding times using U.S. EPA-approved Methods as described in the EPA publication, Test Methods for Evaluation of Solid Wastes, Physical/Chemical Methods (SW-846, 3rd Edition, Update III). The MDLs and EQLs were low enough to determine if the reported COC concentrations, if any, are in excess of the IDEM's RCG Screening Levels. The groundwater analytical results were compared to the following IDEM RCG screening levels:

- Groundwater Tap residential (IDEM RCG TRSL),
- Vapor Exposure groundwater residential (IDEM RCG VERSL), and
- Vapor Exposure groundwater commercial/industrial (IDEM RCG VECISL).

Several COCs were reported above their respective IDEM RCG TRSLs and include arsenic, barium, boron, chromium, cadmium, lead, manganese, lithium, selenium, and molybdenum. Arsenic was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-11, B-13, B-14, B-15, B-16, B-19, B-21, B-27, B-36, B-38, B-80, DUP, TMW-63 (total arsenic), TMW-66 (total arsenic), TMW-71 (dissolved arsenic), TMW-72 (total arsenic), and TMW-74 (total and dissolved arsenic). Barium was detected at concentrations exceeding IDEM RCG TRSL in groundwater sample TMW-74 (total barium). Boron was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-27 and B-36. Chromium was detected at a concentration exceeding IDEM RCG TRSL in groundwater sample B-80. Cadmium was detected at a concentration exceeding IDEM RCG TRSL in groundwater sample TMW-74 (total cadmium). Lead was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-21 (total lead), TMW-66 (total lead), TMW-72 (total lead), TMW-74 (total lead), B-80, and B-88. Total and dissolved Manganese was detected at concentrations exceeding IDEM RCG TRSL in groundwater sample B-77. Lithium was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-27, TMW-72 (total lithium), and TMW-74 (total lithium). Molybdenum was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-27, B-36, and B-38. Selenium was detected at concentrations exceeding IDEM RCG TRSL in groundwater samples B-79 and B-80.

1,1-Dichloroethane and 1,1-Dichloroethene were detected at concentrations exceeding IDEM RCG TRSLs in groundwater sample TMW-71.

Radium was detected in groundwater samples collected from Area 1; however, analytical results were below the IDEM Maximum Contaminant Level (MCL) for drinking water (3 pCi/L for Radium-226, 5 pCi/L for combined Radium-226 and Radium-228).

Additionally, several other COCs were detected above their laboratory reporting limits, but below their respective RCG SLs. The results of the groundwater laboratory analysis are depicted on **Figures 6** and **7**, and provided in **Tables 2A – 2F**. A copy of the laboratory certificate of analysis is provided in **Appendix C**.

Three surface water samples were also collected and analyzed for metals and PCBs. Analytical results for the main ash pond sample (SW-1) indicated concentrations of arsenic and molybdenum exceeding the IDEM RCG TRSL. The sample collected from the overflow pond near the landfill did not exhibit COC concentrations exceeding the IDEM RCG Screening Levels. The analytical results for the surface water sample collected from the leachate pond (SW-3) indicated concentrations of boron and molybdenum exceeding the IDEM RCG TRSL. The results of the surface water analysis are provided in **Table 2B**.

4.4 Public Water Supply Results

Raw or untreated public water supply well samples were collected by the representative utility companies and were analyzed for metals and VOCs. There were detections of barium, boron, calcium, chloride, fluoride and sulfate in both samples at concentrations above the laboratory reporting limits; however, the concentrations were either below applicable IDEM RCG SLs or do not have established IDEM RCG SLs (calcium, chloride, and sulfate). The results of the public water supply wells laboratory analysis are provided in **Table 2E** and the analytical results are provided as **Appendix D**. Additionally, treated public water supply data is available for public review at the following website: https://myweb.in.gov/IDEM/DWW/. The water system ID for Lawrenceburg Municipal Utilities is IN5215006 and IN5215001 for Aurora Utilities.

5 Conclusions

Between January 17, 2018 and May 2, 2018, ATC completed Phase II LSI activities to evaluate current Site conditions. The Phase II activities consisted of advancing 74 soil borings and the installation of 34 temporary monitoring wells with the collection and laboratory analysis of soil and groundwater samples. Between June 16 and June 25, 2018, ATC completed additional sampling activities to evaluate current Site conditions, which included advancing 13 soil borings and the installation of eight temporary monitoring wells.

Soil samples collected from borings advanced at the Site demonstrated variability in soil types and layer depths. Generally, soil samples collected from the borings advanced at the Site indicated a surface layer of coal ash and/or fill material in Area 1, and a surface layer of gravel or topsoil in Area 2. The coal ash/fill material layer in Area 1 ranged in depths of 0.5 feet below ground surface (ft-bgs) to 40 ft-bgs. The coal ash/fill material layer was underlain with clay, sand, silty sand, or gravel. The surface layer in Area 2 was typically underlain with a clay layer that extended to approximately 36 to 50 ft-bgs. The clay layer was underlain with a loamy sand layer.

The field screening (TPV readings) had results ranging from 0.0 ppm to 2,450.0 ppm. The highest TPV reading was from B-02 (14-15). No visual staining or free product was observed in any soil samples collected from the Site.

Laboratory soil sample analysis indicated that multiple COCs were detected above the laboratory reporting limits. VOCs, SVOCs/PAHs, PCBs and metals were detected in soil samples at concentrations that exceeded IDEM RCG SLs. Methylene chloride was detected in two soil samples at concentrations exceeding IDEM RCG MTGSL. Several SVOCs/PAHs were detected at concentrations exceeding applicable **IDEM** RCG MTGSL and included benzo(a)anthracene, benzo(a)pyrene. 1-Methylnaphthalene, and naphthalene. PCB-1242 (Aroclor 1242) was detected in soil samples at concentrations exceeding IDEM RCG MTGSL. Arsenic, cobalt, selenium, and thallium were detected at concentrations exceeding IDEM RCG MTGSL. Arsenic and thallium were detected at concentrations exceeding IDEM RCG RSL. Arsenic was also detected at concentrations exceeding IDEM RCG CISL in 18 soil samples. All but three of the 18 soil samples with arsenic concentrations exceeding IDEM RCG CISL were collected from the 0-2 ft-bgs interval. The other three samples were collected from the 24-25 ft-bgs, 44-45 ft-bgs, and 38-40 ft-bgs intervals. The soil samples exceeding IDEM RCG CISL for arsenic are listed in Table 11. Radium was detected in soil samples, but at concentrations below the established clean-up level for soil.

Groundwater analytical results indicated metals concentrations exceeding IDEM RCG TRSLs. The metals included arsenic, barium, boron, chromium, cadmium, lead, manganese, lithium, selenium, and molybdenum. In addition, 1,1-Dichloroethane and 1,1-Dichloroethene were detected at concentrations exceeding IDEM RCG TRSLs. Radium was detected in groundwater samples, but at concentrations below the US EPA MCL. In addition to groundwater samples collected from temporary wells, laboratory analysis for raw water samples collected from two public water supply wells were provided that were analyzed for metals and VOCs. There were detections of barium, boron, calcium, chloride, fluoride and sulfate in both samples at concentrations above the laboratory reporting limits; however, the concentrations were below applicable IDEM RCG SLs or no established IDEM RCG SLs exist (i.e. calcium, chloride, and sulfate).

Three surface water samples were collected from the main ash pond (SW-1), the landfill overflow pond (SW-2), and the landfill leachate pond (SW-3). Analytical results for surface water sample SW-1 indicated concentrations of arsenic and molybdenum at concentrations exceeding the IDEM RCG MTGSL. The analytical results for the surface water sample collected from the leachate pond (SW-3) indicated concentrations of boron and molybdenum exceeding the IDEM RCG MTGSL.

During this assessment, the groundwater elevations ranged from 433.8 feet above mean sea level (amsl) to 483.9 feet amsl. In Area 1, it appears that the groundwater flow direction is to the southeast towards the Ohio River; however, based on the historical data provided by the client, this flow direction is reversed to the historical observed flow direction to the northwest. Conversely, groundwater flow direction in Area 2 appears to be primarily to the northwest which is consistent with the historical flow direction data.

6 Qualifications

The work performed in conjunction with this assessment, and the data developed, are intended as a description of available information at the dates and locations given. This report does not warrant against future operations or conditions, nor does it warrant against operations or conditions present of a type, or at a location not investigated, nor against future operations or conditions.

The present study included the collection of 174 soil and 42 groundwater samples collected from 88 soil borings advanced at the Site. Additionally three surface water samples were collected from the Main Ash Pond and the landfill leachate and overflow ponds. The conclusions and opinions drawn from this investigation are considered reliable; however, there may exist localized variations in subsurface conditions that have not been completely defined at this time.

Tables			

Table 1A

								P	TC Proje	ct No. 170E	IVIUU522											
	Collected Date Residential Com/Ind	Units	85000 1000000	011 011 011	0 sec-Butylbenzene	0 0 1,1-Dichloroethane	18 Ethylbenzene	Comene (Cumene (Sobropylpenzene (Comene (Sobropylpenzene	П П р-Isopropyltoluene	000 Methylene Chloride	0 1-Methylnaphthalene	0000 0000 0000 0000	S Naphthalene	260 260	870 870	eueno 820 820	049 040 041,1,1-Trichloroethane	7.5 Trichloroethene	0021 0021 0021	200 001 1,2,4-Trimethylbenzene	081 081 1,3,5-Trimethylbenzene	260 092 092 093 093 094 095
	Excavation		100000	110	150	1700	480	270	NE	3300	390	6800	3100	260	870	820	640	95	1200	220	180	260
	ITG Residential		57	64	120	0.16	16	15	NE	0.025	1.2	3.7	0.11	25	2.2	14	1.4	0.036	66	0.44	3.4	200
B-1 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-1 (14-16)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-2 (0-2)	2/2/2018 2/2/2018	mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-2 (14-15)		mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND	ND ND		ND	ND ND	ND	_		ND ND	ND ND	ND ND
B-3 (0-2) B-3 (24-25)	1/17/2018 2/2/2018	mg/kg mg/kg	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-4 (0-2)	2/2/2018	mg/kg	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
B-4 (18-20)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-5 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-5 (16-18)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-6 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-6 (18-20)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7 (20-22)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-8 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-8 (8-10)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-9 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-9 (30-32)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-10 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-10 (18-20)		mg/kg	ND	ND	ND	0.007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.008	ND	ND	ND	ND	ND
B-11 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-11 (32-34)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-12 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-12 (20-22)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-13 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-13 (28-30)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-14 (0-2)	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND 0.0004	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-14 (28-30)	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.0894	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-15 (0-2)	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-15 (32-34) B-16 (0-2)	1/29/2018 1/29/2018	mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA*	ND NA*	ND NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-16 (0-2)		mg/kg mg/kg	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	NA*	NA*	NA*	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND
B-16 (34-36) B-17 (0-2)		mg/kg	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
B-17 (32-34)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
B-18 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-18 (26-28)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-19 (0-2)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	0.0093	ND	ND	ND	ND
B-19 (30-32)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-20 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-20 (28-30)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-21 (0-2)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-21 (28-30)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-22 (0-2)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-22 (24-26)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-23 (0-2)	1/31/2018	mg/kg	0.117	0.783	2.45	ND	0.0164	0.0946	2.73	ND	ND	ND	0.0238	0.227	ND	ND	ND	ND	ND	0.107	4.58	0.131
B-23 (10-12)	1/31/2018	mg/kg	0.129	0.047	0.0142	ND	ND	ND	0.0173	ND	0.0195	0.0164	ND	0.0056	ND	ND	ND	ND	ND	ND	0.0294	ND
B-24 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0107	ND	ND	ND	ND	ND	ND
B-24 (16-18)		mg/kg	0.113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-25 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-25 (10-12)	1/31/2018	mg/kg	0.160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 1A
Soil Analytical Summary (VOCs)
Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Larenceburg, Indiana
ATC Project No. 170EM00522

								P	(TC Proje	ct No. 170E	MUU522											
	Collected Date Residential Com/Ind Excavation	Units	85000 100000	110 110	150 150	091 001 1,1-Dichloroethane	81 250 480	270 270 270	T T T D-Isopropyltoluene	900 3200 3300	052 092 093 098	0008 0008 0088	70 Naphthalene	260 260 260	870 870 870	820 820 820	040 040 041,1,1-Trichloroethane	5.7 Lichloroethene	1200 1200 1200	022 028 18 1,2,4-Trimethylbenzene	081 081 1,3,5-Trimethylbenzene	260 260 260
	ATG Residential		57	64	120	0.16	16	15	NE	0.025	1.2	3.7	0.11	25	2.2	14	1.4	0.036	66	0.44	3.4	200
	,	m m/l m													_							
B-26 (0-2) B-26 (24-26)	1/31/2018 1/31/2018	mg/kg mg/kg	ND 0.197	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-27 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-27 (48-50)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-28 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-28 (28-30)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-29 (0-2)	2/6/2018	mg/kg	0.101	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-29 (14-16)		mg/kg	0.115	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-30 (0-2) B-30 (24-25)	2/6/2018 2/6/2018	mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-30 (24-25) B-31 (0-2)	2/5/2018	mg/kg mg/kg	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA*	NA*	NA*	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-31 (38-40)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-32 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-32 (38-40)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-33 (0-2)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-33 (44-45)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.0877	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-34 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-34 (36-38) B-36 (0-2)	2/6/2018 2/6/2018	mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-36 (12-14)	2/6/2018	mg/kg mg/kg	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-37 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-37 (38-40)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-38 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-38 (38-40)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dup-1	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-2 DUP-3	2/2/2018 2/2/2018	mg/kg	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Dup-3 Dup-4		mg/kg mg/kg	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
TB	1/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-1	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-2	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-3		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-4		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-5 TB-6		mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA*	ND NA*	ND NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TB-7		mg/kg mg/kg	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-39 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-39 (28-30)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-40 (0-2)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-40 (32-34)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-41 (0-2)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-41 (24-26)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-42 (0-2) B-42 (18-20)	4/17/2018 4/17/2018	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-42 (18-20) B-43 (0-2)	4/17/2018	mg/kg	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
B-43 (18-20)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-44 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-44 (18-20)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-45 (0-2)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-45 (14-16)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 1A

										ct No. 170E	:M00522											
	Collected Date Residential Com/Ind	Units	85000 100000	011 011 011	150	0 1,1-Dichloroethane	18 Ethylbenzene	Comene (Comene (Sobrobylpenzene (Comene (Sobrobylpenzene	N H P-Isopropyltoluene	009 Methylene Chloride	002. 002. 002.	008 0 2-Methylnaphthalene	S Naphthalene	260 260	870 870	euenlo_ 820 820	000 1,1,1-Trichloroethane	7.5 Trichloroethene	Trichlorofluoromethane	028 011,2,4-Trimethylbenzene	0 1,3,5-Trimethylbenzene	092 092 093 093 093 093 093 093 093 093 093 093
	Excavation		100000	110	150	1700	480	270	NE	3300	390	6800	3100	260	870	820	640	95	1200	220	180	260
	ITG Residential		57	64	120	0.16	16	15	NE	0.025	1.2	3.7	0.11	25	2.2	14	1.4	0.036	66	0.44	3.4	200
B-46 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-46 (26-28) B-47 (0-2)		mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-47 (26-28)		mg/kg	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
B-48 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-48 (22-24)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-49 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-49 (26-28)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-50 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-51 (0-2)		mg/kg	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-51 (14-16) B-52 (30-32)		mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-53 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-53 (24-26)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-54 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-54 (26-28)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-55 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-55 (30-32)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-56 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-56 (26-28)		mg/kg	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
B-57 (0-2) B-57 (18-20)		mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-58 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-58 (18-20)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-59 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-59 (30-32)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-60 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-60 (36-38)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-61 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-61 (22-24) B-62 (0-2)		mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-62 (0-2) B-62 (14-16)	1	mg/kg mg/kg	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND
B-63 (0-2)		mg/kg	0.0993	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-63 (34-36)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-64 (0-2)	4/23/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0085	ND	ND	ND	ND	ND	ND
B-64 (40-42)		mg/kg	0.166	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-65 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-65 (38-40)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-66 (0-2) B-66 (38-40)		mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B-67 (0-2)		mg/kg	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND
B-67 (20-22)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-68 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-68 (46-48)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-69 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-69 (18-20)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-70 (0-2)		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-70 (24-26)		mg/kg	ND 0.400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-71 (0-2) B-71 (42-44)		mg/kg mg/kg	0.103 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
D-1 I (42-44)	4/24/2018	mg/kg	טאו ן	אט	טויו	טא	אט	עוו	עאו ן	עא ן	טא	טוט	טא	טא	טאו ן	אט	טאו	עאו ן	טא	טאו	טא	טאו

Table 1A

Soil Analytical Summary (VOCs)
Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

									i o i ioje	Ct No. 170E	IVIOUJZZ											
Sample ID	Collected Date	Units	Acetone	n-Butylbenzene	sec-Butylbenzene	1,1-Dichloroethane	Ethylbenzene	Isopropylbenzene (Cumene	p-Isopropyltoluene	Methylene Chloride	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	n-Propylbenzene	Styrene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Xylene (Total)
	esidential		85000	110	150	50	81	270	NE	490	250	340	53	260	870	820	640	5.7	1200	81	180	260
	Com/Ind		100000	110	150	160	250	270	NE	3200	390	3000	170	260	870	820	640	19	1200	220	180	260
	xcavation		100000	110	150	1700	480	270	NE	3300	390	6800	3100	260	870	820	640	95	1200	220	180	260
Soil M	TG Residential		57	64	120	0.16	16	15	NE	0.025	1.2	3.7	0.11	25	2.2	14	1.4	0.036	66	0.44	3.4	200
B-72 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-72 (46-48)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-73 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-73 (34-36)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-74 (0-2)	4/25/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0215	ND	ND	ND
B-74 (34-36)	4/25/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-75 (0-2)	4/25/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0230	ND	ND	ND
B-75 (10-12)	4/25/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-1	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-2	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-3	4/23/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.0546	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-4	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-1	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-2	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-3	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-4	4/20/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-5	4/23/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-6	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	ND	ND	ND	ND	ND	ND	ND	ND

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

Volatile Organic Compounds (VOCs) were analyzed using EPA SW-846 Method 8260B

Constituents not detected above laboratory detection limits are not listed in the table.

ND = Not Detected

NA = Not Analyzed for that constituent

BOLD = results above IDEM RCG Residential Screening Levels

BOLD/ITALICs = results above IDEM RCG Commercial / Industrial Direct Exposure Level **BOLD/SHADED** = results above IDEM RCG Excavation Worker Direct Exposure Level

Table 1B

									, , ,	C Project			_								
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	bis(2-Ethylhexyl)phthalate	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
Re	sidential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	550	3400	3400	15	250	340	53	NE	2500
С	om/Ind		45000	NE	100000	210	21	210	NE	2100	21000	21	1600	30000	30000	210	390	3000	170	NE	23000
Ex	cavation		100000	NE	100000	12000	500	12000	NE	100000	100000	1200	34000	68000	68000	12000	390	6800	3100	NE	51000
Soil MT	G Residential		110	NE	1200	2.1	4.7	60	NE	590	1800	19	29	1800	110	200	1.2	3.7	0.11	NE	260
B-1 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-1 (14-16)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-2 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-2 (14-15)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-3 (0-2)	1/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-3 (24-25)	2/2/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-4 (0-2)	2/2/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-4 (18-20)	2/5/2018	mg/kg	ND	ND	0.597	3.98	3.94	6.21	2.88	2.18	4.91	ND	ND	10.1	ND	2.53	ND	ND	ND	5.39	8.61
B-5 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-5 (16-18)	2/2/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-6 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-6 (18-20)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7 (20-22)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-8 (0-2)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-8 (8-10)	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-9 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-9 (30-32)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-10 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-10 (18-20)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-11 (0-2)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-11 (32-34)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-12 (0-2)	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 1B

									ΑI	C Project	NO. 170E	WW0032	_								
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	bis(2-Ethylhexyl)phthalate	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
Re	sidential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	550	3400	3400	15	250	340	53	NE	2500
С	om/Ind		45000	ΝE	100000	210	21	210	NE	2100	21000	21	1600	30000	30000	210	390	3000	170	NE	23000
	cavation			_	100000	12000	500	12000	NE	100000	100000	1200	34000	68000	68000	12000	390	6800	3100	NE	51000
	G Residential			NE		2.1	4.7	60	NE	590	1800	19	29	1800	110	200	1.2	3.7	0.11	NE	260
		//		-																	
B-12 (20-22)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-13 (0-2)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-13 (28-30)	2/1/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-14 (0-2)	1/29/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-14 (28-30)	1/29/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-15 (0-2)	1/29/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-15 (32-34)	1/29/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-16 (0-2)	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-16 (34-36)	1/29/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-17 (0-2)	1/31/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-17 (32-34)	1/31/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-18 (0-2)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-18 (26-28)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-19 (0-2)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-19 (30-32)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-20 (0-2)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-20 (28-30)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-21 (0-2)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-21 (28-30)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-22 (0-2)	1/30/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-22 (24-26)	1/30/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-23 (0-2)	1/31/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-23 (10-12)	1/31/2018	mg/kg		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-24 (0-2)	1/31/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	2.79	1.43	1.43	ND
B-24 (16-18)	1/31/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-25 (0-2)	1/31/2018	mg/kg		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-25 (10-12)	1/31/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-26 (0-2)	1/31/2018	mg/kg		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-26 (24-26)	1/31/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-27 (0-2)	2/5/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-27 (48-50)	2/5/2018	mg/kg		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-28 (0-2)	2/6/2018	mg/kg	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-28 (28-30)	2/6/2018			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND
D-20 (20-3U)	2/0/2010	mg/kg	טעו	טאון	טעו	טא	שמו	עאו ן	טאו	טאו	טעו	טעו	טוו	טאו	טאו	טא	טא	טא	טא ן	טא	טעו

Table 1B

Soil Analytical Summary (SVOCs)

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

									/\ 1	C Project	140. 170L	VIOUUZ	_								
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	bis(2-Ethylhexyl)phthalate	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
Re	sidential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	550	3400	3400	15	250	340	53	NE	2500
C	Com/Ind		45000	NE	100000	210	21	210	NE	2100	21000	21	1600	30000	30000	210	390	3000	170	NE	23000
Ex	cavation		100000	NE	100000	12000	500	12000	NE	100000	100000	1200	34000	68000	68000	12000	390	6800	3100	NE	51000
Soil MT	G Residential	l	110	NE	1200	2.1	4.7	60	NE	590	1800	19	29	1800	110	200	1.2	3.7	0.11	NE	260
B-29 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-29 (14-16)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-30 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND
B-30 (24-25)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-31 (0-2)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-31 (38-40)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-32 (0-2)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.440	ND	ND	ND	ND	ND	ND	ND
B-32 (38-40)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-33 (0-2)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-33 (44-45)	2/5/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-34 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-34 (36-38)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-36 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-36 (12-14)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-37 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-37 (38-40)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-38 (0-2)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-38 (38-40)	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dup-1	2/1/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-2	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-3	2/2/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dup-4	2/6/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

Samples were analyzed using US EPA SW-846 Methods 8270 and 8270SIM

Constituents not detected above laboratory reporting limits were not included in this table.

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

ND = Not detected

SOLD = results above IDEM RCG Residential Direct Contact and/or Migration to Groundwater Screening Level(s)

BOLD/ITALICS = results above IDEM RCG Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

Soil Analytical Summary (Metals)

						71101	10,000	NO. ITUEN	IOOOLL									
Sample ID	Collected Date	Units	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Lithium	Manganese	Molybdenum	Nickel	Selenium	Thallium	Zinc
	Residential		9.5	21000	220	22000	99	NE	32	4300	400	220	NE	550	2100	550	1.1	32000
	Com/Ind		30	100000	2300	100000	980	NE	350	47000	800	2300	NE	5800	22000	5800	12	100000
	Excavation		920	100000	3800	100000	1900	NE	590	79000	1000	3900	NE	9800	38000	9800	20	100000
Soil	MTG Residential		5.9	1700	63	260	NE	1000000	5.4	920	270	240	NE	41	510	5.3	2.9	7500
B-1 (0-2)	2/2/2018	mg/kg	9.6	155	1.2	ND	ND	21.4	15.9	21.3	13.8	21.5	787	ND	26.1	ND	ND	76.1
B-1 (14-16)	2/2/2018	mg/kg	8.2	126	1.3	ND	ND	16.2	10.9	22.6	21.8	16.7	548	ND	20.2	ND	ND	68.6
B-2 (0-2)	2/2/2018	mg/kg	4.2	236	3.8	54.0	ND	47.9	10.8	14.3	2.5	38.0	150	4.0	28.3	ND	4.3	19.8
B-2 (14-15)	2/2/2018	mg/kg	7.4	134	0.98	ND	ND	18.1	13.6	18.4	13.2	18.1	648	ND	23.4	ND	ND	72.4
B-3 (0-2)	1/17/2018	mg/kg	2.7	247	1.5	23.7	ND	23.1	5.6	8.1	1.4	18.0	52.2	ND	13.5	ND	2.3	7.6
B-3 (24-25)	2/2/2018	mg/kg	8.9	138	0.97	ND	ND	19.9	13.2	20.9	13.1	19.0	778	ND	24.8	ND	ND	70.8
B-4 (0-2)	2/2/2018	mg/kg	4.7	266	5.1	62.6	ND	72.7	14.9	23.1	3.5	45.1	199	4.7	44.1	ND	4.6	25.4
B-4 (18-20)	2/5/2018	mg/kg	9.6	119	0.88	ND	ND	22.0	11.4	24.1	16.5	20.6	739	ND	23.6	ND	ND	76.5
B-5 (0-2)	2/2/2018	mg/kg	9.0	1120	4.0	73.7	ND	61.9	14.8	18.1	5.9	51.7	125	1.5	31.1	ND	6.6	16.5
B-5 (16-18)	2/2/2018	mg/kg	11.8	156	1.2	8.3	1.0	21.8	14.2	36.5	58.2	18.9	775	2.0	26.9	ND	ND	138
B-6 (0-2)	2/2/2018	mg/kg	ND	229	1.1	23.3	ND	21.8	4.8	4.2	ND	16.6	52.0	1.4	10.7	ND	3.2	5.0
B-6 (18-20)	2/2/2018	mg/kg	8.4	146	1.1	ND	ND	19.9	14.6	20.2	14.2	20.4	692	ND	25.4	ND	ND	74.6
B-7 (0-2)	2/1/2018	mg/kg	1.1	142	2.0	36.5	ND	27.4	6.7	5.9	1.5	19.4	114	3.5	27.1	ND	4.0	19.0
B-7 (20-22)	2/1/2018	mg/kg	ND	122	1.0	20.2	ND	14.7	4.1	3.4	ND	14.2	59.2	1.6	13.8	ND	2.6	6.5
B-8 (0-2)	2/2/2018	mg/kg	5.0	47.5	NA*	NA*	ND	24.9	NA*	NA*	8.6	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-8 (8-10)	2/2/2018	mg/kg	10.1	135	NA*	NA*	ND	19.4	NA*	NA*	21.1	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-9 (0-2)	2/1/2018	mg/kg	ND	151	NA*	NA*	ND	21.0	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-9 (30-32)	2/1/2018	mg/kg	6.4	74.2	NA*	NA*	ND	15.1	NA*	NA*	10.9	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-10 (0-2)	2/1/2018	mg/kg	1.7	162	NA*	NA*	ND	17.6	NA*	NA*	1.2	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-10 (18-20)	2/1/2018	mg/kg	4.8	109	NA*	NA*	ND	6.3	NA*	NA*	1.0	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-11 (0-2)	2/1/2018	mg/kg	24.0	149	NA*	NA*	0.64	27.4	NA*	NA*	6.8	NA*	NA*	NA*	NA*	1.8	NA*	NA*
B-11 (32-34)	2/1/2018	mg/kg	22.6	179	NA*	NA*	ND	29.0	NA*	NA*	6.7	NA*	NA*	NA*	NA*	1.4	NA*	NA*
B-12 (0-2)	2/1/2018	mg/kg	31.8	690	NA*	NA*	ND	20.4	NA*	NA*	8.2	NA*	NA*	NA*	NA*	1.7	NA*	NA*
B-12 (20-22)	2/1/2018	mg/kg	2.4	89.5	NA*	NA*	ND	5.0	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-13 (0-2)	2/1/2018	mg/kg	35.8	160	NA*	NA*	0.91	35.2	NA*	NA*	9.8	NA*	NA*	NA*	NA*	1.2	NA*	NA*
B-13 (28-30)	2/1/2018	mg/kg	17.8	172	NA*	NA*	ND	27.8	NA*	NA*	7.5	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-14 (0-2)	1/29/2018	mg/kg	62.5	194	NA*	NA*	1.2	46.9	NA*	NA*	10.8	NA*	NA*	NA*	NA*	1.7	NA*	NA*
B-14 (28-30)	1/29/2018	mg/kg	18.8	258	NA*	NA*	ND	21.2	NA*	NA*	4.7	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-15 (0-2)	1/29/2018	mg/kg	34.5	179	NA*	NA*	0.85	34.5	NA*	NA*	9.0	NA*	NA*	NA*	NA*	1.5	NA*	NA*
B-15 (32-34)	1/29/2018	mg/kg	14.6	261	NA*	NA*	ND	20.4	NA*	NA*	3.5	NA*	NA*	NA*	NA*	1.5	NA*	NA*
B-16 (0-2)	1/29/2018	mg/kg	14.3	167	NA*	NA*	ND	25.5	NA*	NA*	4.3	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-16 (34-36)	1/29/2018	mg/kg	8.7	120	NA*	NA*	ND	15.2	NA*	NA*	10.2	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-17 (0-2)	1/31/2018	mg/kg	2.2	118	ND	ND	ND	5.4	1.8	5.4	ND	ND	23.5	ND	5.5	ND	1.4	4.4
B-17 (32-34)	1/31/2018	mg/kg	2.4	166	ND	ND	ND	6.5	ND	15.2	ND	ND	18.1	ND	5.6	ND	ND	4.0
B-18 (0-2)	1/30/2018	mg/kg	38.0	185	NA*	NA*	1.0	42.5	NA*	NA*	11.7	NA*	NA*	NA*	NA*	5.6	NA*	NA*
B-18 (26-28)	1/30/2018	mg/kg	25.5	107	NA*	NA*	1.7	29.1	NA*	NA*	6.9	NA*	NA*	NA*	NA*	9.6	NA*	NA*
B-19 (0-2)	1/30/2018	mg/kg	9.4	151	NA*	NA*	ND	15.3	NA*	NA*	5.7	NA*	NA*	NA*	NA*	1.9	NA*	NA*
B-19 (30-32)	1/30/2018	mg/kg	8.5	131	NA*	NA*	ND	14.7	NA*	NA*	4.9	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-20 (0-2)	1/30/2018	mg/kg	37.2	256	NA*	NA*	1.0	43.7	NA*	NA*	10.4	NA*	NA*	NA*	NA*	3.7	NA*	NA*
B-20 (28-30)	1/30/2018	mg/kg	18.1	258	NA*	NA*	ND	21.2	NA*	NA*	7.2	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-21 (0-2)	1/30/2018	mg/kg	20.0	307	NA*	NA*	ND	30.3	NA*	NA*	4.7	NA*	NA*	NA*	NA*	ND 0.4	NA*	NA*
B-21 (28-30)	1/30/2018	mg/kg	11.4	108	NA*	NA*	0.82	15.8	NA*	NA*	3.3	NA*	NA*	NA*	NA*	3.4	NA*	NA*
B-22 (0-2)	1/30/2018	mg/kg	38.2	181 781	NA*	NA*	1.1	41.7	NA*	NA*	11.5	NA*	NA*	NA*	NA*	5.0	NA* NA*	NA*
B-22 (24-26)	1/30/2018	mg/kg	20.1		NA*	NA*	ND	27.8	NA*	NA*	10.1	NA*	NA*	NA*	NA*	1.9		NA*
B-23 (0-2)	1/31/2018	mg/kg	5.9	88.5	NA*	NA*	ND	11.6	NA*	NA*	7.8	NA*	NA*	NA*	NA*	ND	NA*	NA*

							Tojoot	140. 170LN	HOOOLL									
Sample ID	Collected Date	Units	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Lithium	Manganese	Molybdenum	Nickel	Selenium	Thallium	Zinc
	Residential		9.5	21000	220	22000	99	NE	32	4300	400	220	NE	550	2100	550	1.1	32000
	Com/Ind		30	100000	2300	100000	980	NE	350	47000	800	2300	NE	5800	22000	5800	12	100000
	Excavation		920	100000	3800	100000	1900	NE	590	79000	1000	3900	NE	9800	38000	9800	20	100000
Soil	MTG Residential		5.9	1700	63	260	NE	1000000	5.4	920	270	240	NE	41	510	5.3	2.9	7500
B-23 (10-12)	1/31/2018	mg/kg	8.1	151	NA*	NA*	ND	18.4	NA*	NA*	11.7	NA*	NA*	NA*	NA*	ND	NA*	NA*
B-24 (0-2)	1/31/2018	ma/ka	5.4	80.8	0.86	6.7	ND	9.7	5.6	13.5	8.1	7.8	213	ND	11.3	1.8	1.7	28.7
B-24 (16-18)	1/31/2018	mg/kg	9.2	161	1.0	ND	ND	18.5	12.7	18.1	12.4	20.8	507	ND	23.7	ND	ND	67.8
B-25 (0-2)	1/31/2018	mg/kg	8.8	151	1.1	ND	ND	18.4	13.0	17.4	11.9	20.6	761	ND	24.0	ND	ND	69.7
B-25 (0 2)	1/31/2018	mg/kg	9.5	153	1.1	ND	ND	18.7	12.6	17.9	12.8	20.9	703	ND	23.9	ND	ND	71.2
B-26 (0-2)	1/31/2018	mg/kg	16.3	56.0	ND	6.9	ND	8.2	8.5	10.8	6.2	7.6	661	ND	14.8	ND	ND	27.4
B-26 (0-2)	1/31/2018	mg/kg	12.9	162	1.2	6.1	ND	20.6	13.6	19.9	12.9	23.2	435	ND	25.8	ND	ND	75.8
B-20 (24-20)	2/5/2018	mg/kg	60.6	246	2.9	42.6	ND	43.3	8.3	29.7	19.8	22.7	124	4.0	26.6	5.7	ND	53.8
B-27 (48-50)	2/5/2018	mg/kg	23.6	357	2.3	49.4	ND	37.9	10.9	29.1	7.8	10.1	193	2.6	26.8	1.7	ND	30.1
B-28 (0-2)	2/6/2018	mg/kg	10.3	109	2.8	19.8	ND	17.9	9.7	31.9	13.0	13.5	82.4	5.0	19.4	25.8	ND	23.4
B-28 (0-2) B-28 (28-30)	2/6/2018	mg/kg	7.3	109	0.80	ND	ND	14.5	10.3	13.8	9.7	15.1	641	4.7	18.6	ND	ND	52.9
B-29 (0-2)	2/6/2018	mg/kg	8.8	175	1.2	ND ND	ND	20.2	13.4	19.6	13.6	21.5	1640	ND	25.8	ND	ND	75.6
B-29 (0-2) B-29 (14-16)	2/6/2018	- 0	8.3	122	0.90	ND	ND	15.8	12.6	17.0	19.4	15.9	651	ND	22.5	ND	ND	79.4
B-30 (0-2)	2/6/2018	mg/kg	105	202	5.3	86.4	1.2	82.6		58.8	59.9	30.8	241	17.8	43.8	14.7	1.9	170
(- /		mg/kg		86.9		86.4 ND	ND	11.3	14.1 8.7	11.1	8.0			2.9		14.7 ND	ND	45.0
B-30 (24-25)	2/6/2018	mg/kg	31.6	414	0.65	45.0	ND	_			7.7	15.3	324		15.8	2.6	ND	
B-31 (0-2)	2/5/2018	mg/kg	19.8		2.2			29.6	6.2	18.5		19.8	83.3	3.1	17.3			29.5
B-31 (38-40)	2/5/2018	mg/kg	10.0	164	1.3	ND	ND	22.9	13.6	21.6	14.4	25.5	545	1.4	26.6	ND	ND	79.2
B-32 (0-2)	2/5/2018	mg/kg	41.0	483	2.8	61.3	8.0	38.1	9.5	26.7	18.2	25.0	343	4.4	37.3	3.3	ND	179
B-32 (38-40)	2/5/2018	mg/kg	7.6	131	0.94	12.6	ND	17.0	12.4	16.6	11.5	19.0	927	21.0	21.3	ND	ND	60.7
B-33 (0-2)	2/5/2018	mg/kg	45.9	393	2.8	53.5	ND	33.7	8.0	29.0	17.4	19.3	79.8	3.3	21.4	6.9	ND	38.7
B-33 (44-45)	2/5/2018	mg/kg	31.4	254	2.7	27.9	ND	36.4	9.3	26.4	13.4	19.1	101	ND	18.4	4.8	ND	25.2
B-34 (0-2)	2/6/2018	mg/kg	30.4	308	3.1	46.4	8.1	54.7	11.5	48.4	15.9	19.0	145	5.0	36.3	6.3	6.0	159
B-34 (36-38)	2/6/2018	mg/kg	21.8	27.7	ND	ND	ND	5.4	4.2	3.9	3.6	5.7	132	ND	7.8	ND	ND	22.0
B-36 (0-2)	2/6/2018	mg/kg	3.3	198	1.8	29.3	ND	25.2	5.8	8.7	3.0	22.8	80.0	3.2	14.6	ND	ND	18.7
B-36 (12-14)	2/6/2018	mg/kg	9.6	100	0.84	19.1	ND	12.7	8.0	12.0	8.3	14.3	351	4.7	16.3	ND	ND	44.4
B-37 (0-2)	2/6/2018	mg/kg	23.2	88.9	1.3	26.1	ND	27.1	4.2	7.4	3.4	13.3	55.3	9.9	14.5	2.6	4.3	23.8
B-37 (38-40)	2/6/2018	mg/kg	42.7	112	0.74	7.9	ND	12.6	9.5	11.5	8.8	17.7	544	ND	17.1	ND	ND	48.9
B-38 (0-2)	2/6/2018	mg/kg	1.5	95.5	1.0	18.3	ND	14.3	3.0	3.9	ND	13.6	43.3	1.6	9.0	ND	2.8	5.5
B-38 (38-40)	2/6/2018	mg/kg	8.9	141	1.0	6.6	ND	17.5	13.4	17.8	12.5	22.2	903	5.9	24.1	ND	ND	66.3
Dup-1	2/1/2018	mg/kg	2.8	150	NA*	NA*	ND	5.8	NA*	NA*	5.2	NA*	NA*	NA*	NA*	ND	NA*	NA*
DUP-2	2/2/2018	mg/kg	15.2	129	0.89	ND	ND	16.4	11.3	28.8	24.5	17.8	438	ND	20.5	ND	ND	69.9
DUP-3	2/2/2018	mg/kg	10.0	116	NA*	NA*	ND	17.1	NA*	NA*	20.1	NA*	NA*	NA*	NA*	ND	NA*	NA*
Dup-4	2/6/2018	mg/kg	23.1	28.4	ND	ND	ND	6.3	3.9	4.2	3.6	5.4	142	ND	7.7	ND	ND	20.0
B-39 (0-2)	4/17/2018	mg/kg	8.9	129	NA*	ND	ND	21.3	NA*	NA*	26.8	21.4	NA*	ND	NA*	ND	NA*	NA*
B-39 (28-30)	4/17/2018	mg/kg	2.0	97.7	NA*	ND	ND	13.1	NA*	NA*	9.0	14.8	NA*	ND	NA*	1.5	NA*	NA*
B-40 (0-2)	4/17/2018	mg/kg	10.0	164	NA*	ND	ND	19.3	NA*	NA*	18.1	19.4	NA*	1.1	NA*	ND	NA*	NA*
B-40 (32-34)	4/17/2018	mg/kg	4.9	97.2	NA*	ND	ND	15.9	NA*	NA*	10.8	17.0	NA*	ND	NA*	ND	NA*	NA*
B-41 (0-2)	4/17/2018	mg/kg	9.3	147	NA*	ND	0.64	18.9	NA*	NA*	22.1	18.9	NA*	1.2	NA*	ND	NA*	NA*
B-41 (24-26)	4/17/2018	mg/kg	17.2	106	NA*	ND	ND	11.8	NA*	NA*	12.5	11.2	NA*	ND	NA*	ND	NA*	NA*
B-42 (0-2)	4/17/2018	mg/kg	10.0	174	NA*	ND	ND	20.1	NA*	NA*	14.5	18.1	NA*	ND	NA*	ND	NA*	NA*
B-42 (18-20)	4/17/2018	mg/kg	6.0	59.8	NA*	ND	ND	10.5	NA*	NA*	6.9	9.9	NA*	ND	NA*	ND	NA*	NA*
B-43 (0-2)	4/17/2018	mg/kg	10.2	183	NA*	ND	ND	21.2	NA*	NA*	20.4	20.0	NA*	1.3	NA*	ND	NA*	NA*
B-43 (18-20)	4/17/2018	mg/kg	6.2	56.2	NA*	ND	ND	11.9	NA*	NA*	7.3	11.0	NA*	ND	NA*	ND	NA*	NA*
B-44 (0-2)	4/17/2018	mg/kg	10.7	187	NA*	ND	ND	20.5	NA*	NA*	21.8	20.0	NA*	1.3	NA*	ND	NA*	NA*

Soil Analytical Summary (Metals)

						71.0	·ojout	NO. 17UEN					4	Ε				
					Ē		Ē					_	Manganese	Molybdenum		Ε	ε	
			Arsenic	Barium	Beryllium	uo.	Cadmium	Chromium	alt	Copper	75	Lithium	ıgar	pq	e e	Selenium	Thallium	
Sample ID	Collected Date	Units	Arse	3ari	3er)	Bore	Sad	ř	Cobalt	뤗	-ead	ith.	/lan	e	Nickel) se le	lhal	Zinc
Campie ID	Residential	Oille	9.5	21000	220	22000	99	NE	32	4300	400	220	NE	550	2100	550	1.1	32000
	Com/Ind		30	100000	2300	100000	980	NE	350	47000	800	2300	NE	5800	22000	5800	12	100000
	Excavation		920	100000	3800	100000	1900	NE	590	79000	1000	3900	NE	9800	38000	9800	20	100000
Soil	MTG Residential		5.9	1700	63	260	NE	1000000	5.4	920	270	240	NE	41	510	5.3	2.9	7500
B-44 (18-20)	4/17/2018	mg/kg	6.4	66.5	NA*	ND	ND	12.8	NA*	NA*	9.1	11.8	NA*	ND	NA*	ND	NA*	NA*
B-45 (0-2)	4/18/2018	mg/kg	9.0	155	NA*	ND	ND	18.4	NA*	NA*	19.0	16.5	NA*	ND	NA*	ND	NA*	NA*
B-45 (14-16)	4/18/2018	mg/kg	7.9	94.8	NA*	ND	ND	14.4	NA*	NA*	10.3	12.4	NA*	ND	NA*	ND	NA*	NA*
B-46 (0-2)	4/18/2018	mg/kg	10.7	198	NA*	ND	ND	21.2	NA*	NA*	21.5	19.2	NA*	ND	NA*	ND	NA*	NA*
B-46 (26-28)	4/18/2018	mg/kg	8.6	96.3	NA*	ND	ND	15.8	NA*	NA*	11.9	13.7	NA*	ND	NA*	ND	NA*	NA*
B-47 (0-2)	4/18/2018	mg/kg	10.5	183	NA*	ND	ND	22.7	NA*	NA*	22.9	20.4	NA*	1.1	NA*	ND	NA*	NA*
B-47 (26-28)	4/18/2018	mg/kg	5.4	76.0	NA*	ND	ND	16.1	NA*	NA*	9.4	15.4	NA*	ND	NA*	ND	NA*	NA*
B-48 (0-2)	4/18/2018	mg/kg	9.9	173	NA*	ND	ND	21.0	NA*	NA*	19.6	18.5	NA*	ND	NA*	ND	NA*	NA*
B-48 (22-24)	4/18/2018	mg/kg	4.5	74.2	NA*	ND	ND	18.4	NA*	NA*	10.7	16.3	NA*	ND 1.5	NA*	ND	NA*	NA*
B-49 (0-2) B-49 (26-28)	4/18/2018 4/18/2018	mg/kg	13.5 6.6	152 89.2	NA* NA*	ND ND	ND ND	22.8 11.6	NA* NA*	NA* NA*	24.6 7.8	19.3 10.4	NA* NA*	1.5 ND	NA* NA*	ND ND	NA* NA*	NA* NA*
B-50 (0-2)	4/18/2018	mg/kg mg/kg	9.5	161	NA*	ND	0.64	22.2	NA*	NA*	22.6	19.3	NA*	1.2	NA*	ND	NA*	NA*
B-50 (0-2)	4/18/2018	mg/kg	3.2	59.9	NA*	ND	ND	12.3	NA*	NA*	8.9	12.5	NA*	ND	NA*	ND	NA*	NA*
B-51 (0-2)	4/18/2018	mg/kg	31.9	152	NA*	5.2	ND	23.0	NA*	NA*	26.7	17.8	NA*	1.9	NA*	ND	NA*	NA*
B-51 (14-16)	4/18/2018	mg/kg	6.8	66.1	NA*	ND	ND	11.4	NA*	NA*	9.1	9.7	NA*	ND	NA*	ND	NA*	NA*
B-52 (0-2)	4/18/2018	mg/kg	9.7	130	NA*	ND	0.76	21.6	NA*	NA*	30.1	17.3	NA*	1.2	NA*	ND	NA*	NA*
B-52 (30-32)	4/18/2018	mg/kg	3.8	84.7	NA*	ND	ND	14.2	NA*	NA*	10.3	15.4	NA*	ND	NA*	ND	NA*	NA*
B-53 (0-2)	4/19/2018	mg/kg	10.0	191	NA*	ND	ND	21.9	NA*	NA*	13.2	20.2	NA*	ND	NA*	ND	NA*	NA*
B-53 (24-26)	4/19/2018	mg/kg	4.7	80.3	NA*	6.8	ND	14.8	NA*	NA*	9.4	16.5	NA*	ND	NA*	ND	NA*	NA*
B-54 (0-2)	4/19/2018	mg/kg	7.8	121	NA*	ND	ND	23.8	NA*	NA*	13.4	21.1	NA*	ND	NA*	ND	NA*	NA*
B-54 (26-28)	4/19/2018	mg/kg	6.4	130	NA*	7.3	ND	18.8	NA*	NA*	11.0	20.4	NA*	ND	NA*	ND	NA*	NA*
B-55 (0-2)	4/19/2018	mg/kg	6.7	131	NA*	5.5	ND	22.6	NA*	NA*	9.5	28.7	NA*	ND	NA*	ND	NA*	NA*
B-55 (30-32)	4/19/2018	mg/kg	7.3	81.9	NA*	7.9	ND	12.8	NA*	NA*	8.8	12.8	NA*	ND	NA*	ND	NA*	NA*
B-56 (0-2)	4/19/2018	mg/kg	4.1	37.8	NA*	14.6	ND	21.6	NA*	NA*	6.0	38.5	NA*	ND	NA*	ND	NA*	NA*
B-56 (26-28)	4/19/2018	mg/kg	8.2	117	NA*	ND	ND	17.1	NA*	NA*	10.9	16.7	NA*	ND	NA*	ND	NA*	NA*
B-57 (0-2)	4/19/2018	mg/kg	9.7	152	NA*	ND	ND	19.7	NA*	NA*	12.6	19.0	NA*	1.2	NA*	ND	NA*	NA*
B-57 (18-20)	4/19/2018	mg/kg	6.2	69.1	NA*	6.1	ND ND	10.9 21.0	NA* NA*	NA*	7.1	10.0	NA*	ND ND	NA*	ND ND	NA* NA*	NA*
B-58 (0-2) B-58 (18-20)	4/19/2018 4/19/2018	mg/kg mg/kg	9.0 7.7	125 108	NA* NA*	7.1 6.0	ND	15.8	NA*	NA* NA*	15.6 10.0	22.9 15.3	NA* NA*	ND	NA* NA*	ND	NA*	NA* NA*
B-56 (16-20)	4/19/2018	mg/kg	3.6	29.3	NA*	18.1	ND	23.0	NA*	NA*	6.0	47.6	NA*	ND	NA*	ND	NA*	NA*
B-59 (30-32)	4/19/2018	mg/kg	7.2	97.4	NA*	7.6	ND	15.5	NA*	NA*	9.4	16.5	NA*	ND	NA*	ND	NA*	NA*
B-60 (0-2)	4/20/2018	mg/kg	7.9	160	NA*	ND	ND	20.6	NA*	NA*	13.1	23.4	NA*	ND	NA*	ND	NA*	NA*
B-60 (36-38)	4/20/2018	mg/kg	8.1	97.0	NA*	ND	ND	12.4	NA*	NA*	15.6	12.7	NA*	ND	NA*	ND	NA*	NA*
B-61 (0-2)	4/20/2018	mg/kg	7.5	116	NA*	ND	ND	16.0	NA*	NA*	17.1	18.3	NA*	1.3	NA*	ND	NA*	NA*
B-61 (22-24)	4/20/2018	mg/kg	6.6	113	NA*	10.3	ND	13.1	NA*	NA*	10.5	12.2	NA*	ND	NA*	ND	NA*	NA*
B-62 (0-2)	4/20/2018	mg/kg	7.5	113	NA*	5.1	ND	14.5	NA*	NA*	10.3	14.5	NA*	ND	NA*	ND	NA*	NA*
B-62 (14-16)	4/20/2018	mg/kg	4.6	50.4	NA*	ND	ND	7.9	NA*	NA*	5.7	7.1	NA*	ND	NA*	ND	NA*	NA*
B-63 (0-2)	4/23/2018	mg/kg	7.0	284	NA*	37.4	ND	12.8	NA*	NA*	13.2	13.7	NA*	1.5	NA*	1.5	NA*	NA*
B-63 (34-36)	4/23/2018	mg/kg	8.4	111	NA*	ND	ND	14.8	NA*	NA*	15.3	14.6	NA*	1.3	NA*	ND	NA*	NA*
B-64 (0-2)	4/23/2018	mg/kg	11.9	93.2	NA*	21.3	ND	24.1	NA*	NA*	2.5	13.4	NA*	7.8	NA*	2.2	NA*	NA*
B-64 (40-42)	4/23/2018	mg/kg	11.9	182	NA*	ND	1.4	41.4	NA*	NA*	47.1	21.9	NA*	1.9	NA*	ND	NA*	NA*
B-65 (0-2)	4/23/2018	mg/kg	8.6	152	NA*	ND	ND	16.6	NA*	NA*	14.6	16.5	NA*	ND	NA*	ND	NA*	NA*
B-65 (38-40)	4/23/2018	mg/kg	8.0	93.2	NA*	ND	ND	14.5	NA*	NA*	15.5	16.4	NA*	ND	NA*	ND	NA*	NA*
B-66 (0-2)	4/23/2018	mg/kg	8.3	103	NA*	ND	ND	16.2	NA*	NA*	14.2	16.6	NA*	ND	NA*	ND	NA*	NA*
B-66 (38-40)	4/23/2018	mg/kg	8.0	94.7	NA*	ND	ND	12.9	NA*	NA*	15.9	14.1	NA*	ND	NA*	ND	NA*	NA*

Soil Analytical Summary (Metals)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Larenceburg, Indiana
ATC Project No. 170EM00522

							,	110. 17021										
Sample ID	Collected Date	Units	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Lithium	Manganese	Molybdenum	Nickel	Selenium	Thallium	Zinc
F	Residential		9.5	21000	220	22000	99	NE	32	4300	400	220	NE	550	2100	550	1.1	32000
	Com/Ind		30	100000	2300	100000	980	NE	350	47000	800	2300	NE	5800	22000	5800	12	100000
Е	Excavation		920	100000	3800	100000	1900	NE	590	79000	1000	3900	NE	9800	38000	9800	20	100000
Soil M	ITG Residential		5.9	1700	63	260	NE	1000000	5.4	920	270	240	NE	41	510	5.3	2.9	7500
B-67 (0-2)	4/23/2018	mg/kg	ND	103	NA*	22.1	ND	22.0	NA*	NA*	ND	13.6	NA*	2.0	NA*	ND	NA*	NA*
B-67 (20-22)	4/23/2018	mg/kg	6.4	102	NA*	ND	ND	12.4	NA*	NA*	11.0	12.8	NA*	ND	NA*	ND	NA*	NA*
B-68 (0-2)	4/24/2018	mg/kg	9.6	160	NA*	ND	ND	19.2	NA*	NA*	13.6	19.8	NA*	ND	NA*	ND	NA*	NA*
B-68 (46-48)	4/24/2018	mg/kg	8.9	154	NA*	ND	ND	17.1	NA*	NA*	12.0	18.1	NA*	ND	NA*	ND	NA*	NA*
B-69 (0-2)	4/24/2018	mg/kg	14.4	53.0	NA*	12.6	ND	7.9	NA*	NA*	5.4	5.9	NA*	ND	NA*	ND	NA*	NA*
B-69 (18-20)	4/24/2018	mg/kg	10.0	150	NA*	8.7	ND	17.8	NA*	NA*	8.3	8.9	NA*	ND	NA*	ND	NA*	NA*
B-70 (0-2)	4/24/2018	mg/kg	5.4	34.9	NA*	ND	ND	13.1	NA*	NA*	5.2	5.6	NA*	ND	NA*	ND	NA*	NA*
B-70 (24-26)	4/24/2018	mg/kg	13.7	145	NA*	9.6	ND	17.8	NA*	NA*	8.5	9.9	NA*	ND	NA*	1.7	NA*	NA*
B-71 (0-2)	4/24/2018	mg/kg	3.5	16.6	NA*	16.6	ND	5.1	NA*	NA*	2.7	14.9	NA*	ND	NA*	ND	NA*	NA*
B-71 (42-44)	4/24/2018	mg/kg	6.7	103	NA*	ND	ND	13.6	NA*	NA*	9.7	15.2	NA*	ND	NA*	ND	NA*	NA*
B-72 (0-2)	4/24/2018	mg/kg	7.5	116	NA*	5.9	ND	11.1	NA*	NA*	7.0	12.0	NA*	1.1	NA*	ND	NA*	NA*
B-72 (46-48)	4/24/2018	mg/kg	6.8	80.7	NA*	ND	ND	12.4	NA*	NA*	8.4	12.0	NA*	ND	NA*	ND	NA*	NA*
B-73 (0-2)	4/24/2018	mg/kg	6.6	41.9	NA*	12.6	ND	9.4	NA*	NA*	12.1	14.2	NA*	1.4	NA*	2.2	NA*	NA*
B-73 (34-36)	4/24/2018	mg/kg	6.4	113	NA*	ND	ND	13.8	NA*	NA*	9.5	14.1	NA*	ND	NA*	ND	NA*	NA*
B-74 (0-2)	4/25/2018	mg/kg	9.1	132	NA*	16.3	0.87	16.3	NA*	NA*	53.4	14.0	NA*	2.0	NA*	8.3	NA*	NA*
B-74 (34-36)	4/25/2018	mg/kg	9.8	119	NA*	ND	ND	15.9	NA*	NA*	22.1	17.2	NA*	ND	NA*	ND	NA*	NA*
B-75 (0-2)	4/25/2018	mg/kg	4.8	93.3	NA*	21.5	ND	18.5	NA*	NA*	56.0	19.3	NA*	1.7	NA*	6.6	NA*	NA*
B-75 (10-12)	4/25/2018	mg/kg	8.5	98.2	NA*	ND	ND	15.0	NA*	NA*	24.0	12.3	NA*	ND	NA*	ND	NA*	NA*
DUP-1	4/18/2018	mg/kg	5.2	61.6	NA*	5.7	ND	11.5	NA*	NA*	8.1	9.8	NA*	ND	NA*	ND	NA*	NA*
DUP-2	4/19/2018	mg/kg	7.7	117	NA*	ND	ND	17.3	NA*	NA*	10.0	17.8	NA*	ND	NA*	ND	NA*	NA*
DUP-3	4/23/2018	mg/kg	9.5	93.7	NA*	ND	ND	13.6	NA*	NA*	21.3	14.2	NA*	ND	NA*	ND	NA*	NA*
DUP-4	4/24/2018	mg/kg	15.3	150	NA*	9.9	ND	18.1	NA*	NA*	8.1	10.1	NA*	1.3	NA*	1.4	NA*	NA*

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)
Samples were analyzed for metals using US EPA SW-846 Methods 6010B, 7196, and 7470

Constituents not detected above laboratory detection limits are not listed in this table.

NA = Not analyzed

ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact Screening Level

BOLD/ITALICS = results above IDEM RCG Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

	7.176 1 10,0		PCB-1242	PCB-1260
Sample ID	Collected Date	Units	(Aroclor 1242)	(Aroclor 1260)
	Residential	Office	3.2	3.4
<u> </u>	Com/Ind		9.5	9.9
	Excavation		560	570
	MTG Residential		0.24	1.1
B-1 (0-2)	2/2/2018	ma/ka	NA*	NA*
B-1 (0-2)	2/2/2018	mg/kg	NA*	NA*
B-1 (14-10) B-2 (0-2)	2/2/2018	mg/kg mg/kg	NA*	NA*
B-2 (0-2) B-2 (14-15)	2/2/2018	mg/kg	NA*	NA*
B-2 (14-13) B-3 (0-2)	1/17/2018	mg/kg	ND	ND
B-3 (0-2) B-3 (24-25)	2/2/2018	mg/kg	NA*	NA*
B-3 (24-23) B-4 (0-2)	2/2/2018	mg/kg	NA*	NA*
B-4 (0-2)	2/5/2018	mg/kg	NA*	NA*
B-5 (0-2)	2/2/2018	mg/kg	ND	ND
B-5 (0-2)	2/2/2018	mg/kg	NA*	NA*
B-6 (0-2)	2/2/2018	mg/kg	NA*	NA*
B-6 (18-20)	2/2/2018	mg/kg	NA*	NA*
B-7 (0-2)	2/1/2018	mg/kg	NA*	NA*
B-7 (20-22)	2/1/2018	mg/kg	NA*	NA*
B-8 (0-2)	2/2/2018	mg/kg	NA*	NA*
B-8 (8-10)	2/2/2018	mg/kg	NA*	NA*
B-9 (0-2)	2/1/2018	mg/kg	ND	ND
B-9 (30-32)	2/1/2018	mg/kg	NA*	NA*
B-10 (0-2)	2/1/2018	mg/kg	ND	ND
B-10 (18-20)	2/1/2018	mg/kg	NA*	NA*
B-11 (0-2)	2/1/2018	mg/kg	NA*	NA*
B-11 (32-34)	2/1/2018	mg/kg	NA*	NA*
B-12 (0-2)	2/1/2018	mg/kg	NA*	NA*
B-12 (20-22)	2/1/2018	mg/kg	NA*	NA*
B-13 (0-2)	2/1/2018	mg/kg	NA*	NA*
B-13 (28-30)	2/1/2018	mg/kg	NA*	NA*
B-14 (0-2)	1/29/2018	mg/kg	NA*	NA*
B-14 (28-30)	1/29/2018	mg/kg	NA*	NA*
B-15 (0-2)	1/29/2018	mg/kg	NA*	NA*
B-15 (32-34)	1/29/2018	mg/kg	NA*	NA*
B-16 (0-2)	1/29/2018	mg/kg	NA*	NA*
B-16 (34-36)	1/29/2018	mg/kg	NA*	NA*
B-17 (0-2)	1/31/2018	mg/kg	NA*	NA*
B-17 (32-34)	1/31/2018	mg/kg	NA*	NA*
B-18 (0-2)	1/30/2018	mg/kg	NA*	NA*
B-18 (26-28)	1/30/2018	mg/kg	NA*	NA*

			PCB-1242	PCB-1260
Sample ID	Collected Date	Units	(Aroclor 1242)	(Aroclor 1260)
I	Residential		3.2	3.4
	Com/Ind		9.5	9.9
	Excavation		560	570
Soil I	MTG Residential		0.24	1.1
B-19 (0-2)	1/30/2018	mg/kg	NA*	NA*
B-19 (30-32)	1/30/2018	mg/kg	NA*	NA*
B-20 (0-2)	1/30/2018	mg/kg	NA*	NA*
B-20 (28-30)	1/30/2018	mg/kg	NA*	NA*
B-21 (0-2)	1/30/2018	mg/kg	ND	ND
B-21 (28-30)	1/30/2018	mg/kg	NA*	NA*
B-22 (0-2)	1/30/2018	mg/kg	NA*	NA*
B-22 (24-26)	1/30/2018	mg/kg	NA*	NA*
B-23 (0-2)	1/31/2018	mg/kg	NA*	NA*
B-23 (10-12)	1/31/2018	mg/kg	NA*	NA*
B-24 (0-2)	1/31/2018	mg/kg	NA*	NA*
B-24 (16-18)	1/31/2018	mg/kg	NA*	NA*
B-25 (0-2)	1/31/2018	mg/kg	NA*	NA*
B-25 (10-12)	1/31/2018	mg/kg	NA*	NA*
B-26 (0-2)	1/31/2018	mg/kg	NA*	NA*
B-26 (24-26)	1/31/2018	mg/kg	NA*	NA*
B-27 (0-2)	2/5/2018	mg/kg	NA*	NA*
B-27 (48-50)	2/5/2018	mg/kg	NA*	NA*
B-28 (0-2)	2/6/2018	mg/kg	NA*	NA*
B-28 (28-30)	2/6/2018	mg/kg	NA*	NA*
B-29 (0-2)	2/6/2018	mg/kg	NA*	NA*
B-29 (14-16)	2/6/2018	mg/kg	NA*	NA*
B-30 (0-2)	2/6/2018	mg/kg	NA*	NA*
B-30 (24-25)	2/6/2018	mg/kg	NA*	NA*
B-31 (0-2)	2/5/2018	mg/kg	NA*	NA*
B-31 (38-40)	2/5/2018	mg/kg	NA*	NA*
B-32 (0-2)	2/5/2018	mg/kg	NA*	NA*
B-32 (38-40)	2/5/2018	mg/kg	NA*	NA*
B-33 (0-2)	2/5/2018	mg/kg	NA*	NA*
B-33 (44-45)	2/5/2018	mg/kg	NA*	NA*
B-34 (0-2)	2/6/2018	mg/kg	ND	ND
B-34 (36-38)	2/6/2018	mg/kg	NA*	NA*
B-36 (0-2)	2/6/2018	mg/kg	NA*	NA*
B-36 (12-14)	2/6/2018	mg/kg	NA*	NA*
B-37 (0-2)	2/6/2018	mg/kg	NA*	NA*
B-37 (38-40)	2/6/2018	mg/kg	NA*	NA*

			PCB-1242	PCB-1260
Sample ID	Collected Date	Units	(Aroclor 1242)	(Aroclor 1260)
	Residential		3.2	3.4
	Com/Ind		9.5	9.9
	Excavation		560	570
Soil I	MTG Residential		0.24	1.1
B-38 (0-2)	2/6/2018	mg/kg	ND	0.210
B-38 (38-40)	2/6/2018	mg/kg	NA*	NA*
Dup-1	2/1/2018	mg/kg	NA*	NA*
DUP-2	2/2/2018	mg/kg	NA*	NA*
DUP-3	2/2/2018	mg/kg	NA*	NA*
Dup-4	2/6/2018	mg/kg	NA*	NA*
B-39 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-39 (28-30)	4/17/2018	mg/kg	NA*	NA*
B-40 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-40 (32-34)	4/17/2018	mg/kg	NA*	NA*
B-41 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-41 (24-26)	4/17/2018	mg/kg	NA*	NA*
B-42 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-42 (18-20)	4/17/2018	mg/kg	NA*	NA*
B-43 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-43 (18-20)	4/17/2018	mg/kg	NA*	NA*
B-44 (0-2)	4/17/2018	mg/kg	NA*	NA*
B-44 (18-20)	4/17/2018	mg/kg	NA*	NA*
B-45 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-45 (14-16)	4/18/2018	mg/kg	NA*	NA*
B-46 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-46 (26-28)	4/18/2018	mg/kg	NA*	NA*
B-47 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-47 (26-28)	4/18/2018	mg/kg	NA*	NA*
B-48 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-48 (22-24)	4/18/2018	mg/kg	NA*	NA*
B-49 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-49 (26-28)	4/18/2018	mg/kg	NA*	NA*
B-50 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-50 (22-24)	4/18/2018	mg/kg	NA*	NA*
B-51 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-51 (14-16)	4/18/2018	mg/kg	NA*	NA*
B-52 (0-2)	4/18/2018	mg/kg	NA*	NA*
B-52 (30-32)	4/18/2018	mg/kg	NA*	NA*
B-53 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-53 (24-26)	4/19/2018	mg/kg	NA*	NA*

			PCB-1242	PCB-1260
Sample ID	Collected Date	Units	(Aroclor 1242)	(Aroclor 1260)
ı	Residential		3.2	3.4
	Com/Ind		9.5	9.9
	Excavation		560	570
Soil I	MTG Residential		0.24	1.1
B-54 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-54 (26-28)	4/19/2018	mg/kg	NA*	NA*
B-55 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-55 (30-32)	4/19/2018	mg/kg	NA*	NA*
B-56 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-56 (26-28)	4/19/2018	mg/kg	NA*	NA*
B-57 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-57 (18-20)	4/19/2018	mg/kg	NA*	NA*
B-58 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-58 (18-20)	4/19/2018	mg/kg	NA*	NA*
B-59 (0-2)	4/19/2018	mg/kg	NA*	NA*
B-59 (30-32)	4/19/2018	mg/kg	NA*	NA*
B-60 (0-2)	4/20/2018	mg/kg	ND	ND
B-60 (36-38)	4/20/2018	mg/kg	ND	ND
B-61 (0-2)	4/20/2018	mg/kg	ND	ND
B-61 (22-24)	4/20/2018	mg/kg	ND	ND
B-62 (0-2)	4/20/2018	mg/kg	ND	ND
B-62 (14-16)	4/20/2018	mg/kg	ND	ND
B-63 (0-2)	4/23/2018	mg/kg	ND	ND
B-63 (34-36)	4/23/2018	mg/kg	ND	ND
B-64 (0-2)	4/23/2018	mg/kg	ND	ND
B-64 (40-42)	4/23/2018	mg/kg	ND	ND
B-65 (0-2)	4/23/2018	mg/kg	ND	ND
B-65 (38-40)	4/23/2018	mg/kg	ND	ND
B-66 (0-2)	4/23/2018	mg/kg	ND	ND
B-66 (38-40)	4/23/2018	mg/kg	ND	ND
B-67 (0-2)	4/23/2018	mg/kg	ND	ND
B-67 (20-22)	4/23/2018	mg/kg	ND	ND
B-68 (0-2)	4/24/2018	mg/kg	ND	ND
B-68 (46-48)	4/24/2018	mg/kg	ND	ND
B-69 (0-2)	4/24/2018	mg/kg	ND	ND
B-69 (18-20)	4/24/2018	mg/kg	ND	ND
B-70 (0-2)	4/24/2018	mg/kg	ND	ND
B-70 (24-26)	4/24/2018	mg/kg	ND	ND
B-71 (0-2)	4/24/2018	mg/kg	0.365	ND
B-71 (42-44)	4/24/2018	mg/kg	ND	ND

Table 1D

Soil Analytical Summary (PCBs)

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

			PCB-1242	PCB-1260
Sample ID	Collected Date	Units	(Aroclor 1242)	(Aroclor 1260)
	Residential		3.2	3.4
	Com/Ind		9.5	9.9
	Excavation		560	570
Soil I	MTG Residential		0.24	1.1
B-72 (0-2)	4/24/2018	mg/kg	ND	ND
B-72 (46-48)	4/24/2018	mg/kg	ND	ND
B-73 (0-2)	4/24/2018	mg/kg	ND	ND
B-73 (34-36)	4/24/2018	mg/kg	ND	ND
B-74 (0-2)	4/25/2018	mg/kg	ND	ND
B-74 (34-36)	4/25/2018	mg/kg	ND	ND
B-75 (0-2)	4/25/2018	mg/kg	0.682	ND
B-75 (10-12)	4/25/2018	mg/kg	ND	ND
DUP-1	4/18/2018	mg/kg	NA*	NA*
DUP-2	4/19/2018	mg/kg	NA*	NA*
DUP-3	4/23/2018	mg/kg	NA*	NA*
DUP-4	4/24/2018	mg/kg	NA*	NA*

Notes:

Results are presented in milligrams per kilogram (mg/kg).

Samples were analyzed using US EPA SW-846 Method 8082.

Constituents not detected above laboratory detection limits are not listed in the table.

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

NA = Not analyzed ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact or Migration to Groundwater Screening Level

BOLD/ITALICS = results above IDEM RCG Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

Table 1E Soil Analytical Summary (Fluoride)

Sample ID	Collected Date	Units	Fluoride
	Residential		4300
	Com/Ind		47000
	Excavation		79000
B-1 (0-2)	2/2/2018	mg/kg	ND
B-1 (14-16)	2/2/2018	mg/kg	ND
B-2 (0-2)	2/2/2018	mg/kg	ND
B-2 (14-15)	2/2/2018	mg/kg	ND
B-3 (0-2)	1/17/2018	mg/kg	ND
B-3 (24-25)	2/2/2018	mg/kg	ND
B-4 (0-2)	2/2/2018	mg/kg	ND
B-4 (18-20)	2/5/2018	mg/kg	ND
B-5 (0-2)	2/2/2018	mg/kg	ND
B-5 (16-18)	2/2/2018	mg/kg	ND
B-6 (0-2)	2/2/2018	mg/kg	ND
B-6 (18-20)	2/2/2018	mg/kg	ND
B-7 (0-2)	2/1/2018	mg/kg	ND
B-7 (20-22)	2/1/2018	mg/kg	ND
B-8 (0-2)	2/2/2018	mg/kg	NA*
B-8 (8-10)	2/2/2018	mg/kg	NA*
B-9 (0-2)	2/1/2018	mg/kg	NA*
B-9 (30-32)	2/1/2018	mg/kg	NA*
B-10 (0-2)	2/1/2018	mg/kg	NA*
B-10 (18-20)	2/1/2018	mg/kg	NA*
B-11 (0-2)	2/1/2018	mg/kg	NA*
B-11 (32-34)	2/1/2018	mg/kg	NA*
B-12 (0-2)	2/1/2018	mg/kg	NA*
B-12 (20-22)	2/1/2018	mg/kg	NA*
B-13 (0-2)	2/1/2018	mg/kg	NA*
B-13 (28-30)	2/1/2018	mg/kg	NA*
B-14 (0-2)	1/29/2018	mg/kg	NA*
B-14 (28-30)	1/29/2018	mg/kg	NA*
B-15 (0-2)	1/29/2018	mg/kg	NA*
B-15 (32-34)	1/29/2018	mg/kg	NA*
B-16 (0-2)	1/29/2018	mg/kg	NA*
B-16 (34-36)	1/29/2018	mg/kg	NA*
B-17 (0-2)	1/31/2018	mg/kg	ND
B-17 (32-34)	1/31/2018	mg/kg	ND
B-18 (0-2)	1/30/2018	mg/kg	NA*
B-18 (26-28)	1/30/2018	mg/kg	NA*
B-19 (0-2)	1/30/2018	mg/kg	NA*
B-19 (30-32)	1/30/2018	mg/kg	NA*

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Fluoride
	Residential		4300
	Com/Ind		47000
	Excavation		79000
B-20 (0-2)	1/30/2018	mg/kg	NA*
B-20 (28-30)	1/30/2018	mg/kg	NA*
B-21 (0-2)	1/30/2018	mg/kg	NA*
B-21 (28-30)	1/30/2018	mg/kg	NA*
B-22 (0-2)	1/30/2018	mg/kg	NA*
B-22 (24-26)	1/30/2018	mg/kg	NA*
B-23 (0-2)	1/31/2018	mg/kg	NA*
B-23 (10-12)	1/31/2018	mg/kg	NA*
B-24 (0-2)	1/31/2018	mg/kg	ND
B-24 (16-18)	1/31/2018	mg/kg	ND
B-25 (0-2)	1/31/2018	mg/kg	ND
B-25 (10-12)	1/31/2018	mg/kg	ND
B-26 (0-2)	1/31/2018	mg/kg	ND
B-26 (24-26)	1/31/2018	mg/kg	ND
B-27 (0-2)	2/5/2018	mg/kg	ND
B-27 (48-50)	2/5/2018	mg/kg	ND
B-28 (0-2)	2/6/2018	mg/kg	ND
B-28 (28-30)	2/6/2018	mg/kg	ND
B-29 (0-2)	2/6/2018	mg/kg	ND
B-29 (14-16)	2/6/2018	mg/kg	ND
B-30 (0-2)	2/6/2018	mg/kg	ND
B-30 (24-25)	2/6/2018	mg/kg	ND
B-31 (0-2)	2/5/2018	mg/kg	ND
B-31 (38-40)	2/5/2018	mg/kg	ND
B-32 (0-2)	2/5/2018	mg/kg	30.5
B-32 (38-40)	2/5/2018	mg/kg	ND
B-33 (0-2)	2/5/2018	mg/kg	ND
B-33 (44-45)	2/5/2018	mg/kg	ND
B-34 (0-2)	2/6/2018	mg/kg	ND
B-34 (36-38)	2/6/2018	mg/kg	ND
B-36 (0-2)	2/6/2018	mg/kg	ND
B-36 (12-14)	2/6/2018	mg/kg	ND
B-37 (0-2)	2/6/2018	mg/kg	ND
B-37 (38-40)	2/6/2018	mg/kg	ND
B-38 (0-2)	2/6/2018	mg/kg	ND
B-38 (38-40)	2/6/2018	mg/kg	ND
Dup-1	2/1/2018	mg/kg	NA*
DUP-2	2/2/2018	mg/kg	ND

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Fluoride
Campic ID	Residential	Office	4300
	Com/Ind		47000
	Excavation		79000
DUP-3	2/2/2018	ma/ka	NA*
Dup-4	2/6/2018	mg/kg mg/kg	ND ND
B-39 (0-2)	4/17/2018	mg/kg	NA*
B-39 (0-2) B-39 (28-30)	4/17/2018	mg/kg	NA*
B-40 (0-2)	4/17/2018	mg/kg	NA*
B-40 (32-34)	4/17/2018	mg/kg	NA*
B-41 (0-2)	4/17/2018	mg/kg	NA*
B-41 (24-26)	4/17/2018	mg/kg	NA*
B-42 (0-2)	4/17/2018	mg/kg	NA*
B-42 (18-20)	4/17/2018	mg/kg	NA*
B-43 (0-2)	4/17/2018	mg/kg	NA*
B-43 (18-20)	4/17/2018	mg/kg	NA*
B-44 (0-2)	4/17/2018	mg/kg	NA*
B-44 (18-20)	4/17/2018	mg/kg	NA*
B-45 (0-2)	4/18/2018	mg/kg	NA*
B-45 (14-16)	4/18/2018	mg/kg	NA*
B-46 (0-2)	4/18/2018	mg/kg	NA*
B-46 (26-28)	4/18/2018	mg/kg	NA*
B-47 (0-2)	4/18/2018	mg/kg	NA*
B-47 (26-28)	4/18/2018	mg/kg	NA*
B-48 (0-2)	4/18/2018	mg/kg	NA*
B-48 (22-24)	4/18/2018	mg/kg	NA*
B-49 (0-2)	4/18/2018	mg/kg	NA*
B-49 (26-28)	4/18/2018	mg/kg	NA*
B-50 (0-2)	4/18/2018	mg/kg	NA*
B-50 (22-24)	4/18/2018	mg/kg	NA*
B-51 (0-2)	4/18/2018	mg/kg	NA*
B-51 (14-16)	4/18/2018	mg/kg	NA*
B-52 (0-2)	4/18/2018	mg/kg	NA*
B-52 (30-32)	4/18/2018	mg/kg	NA*
B-53 (0-2)	4/19/2018	mg/kg	NA*
B-53 (24-26)	4/19/2018	mg/kg	NA*
B-54 (0-2)	4/19/2018	mg/kg	NA*
B-54 (26-28)	4/19/2018	mg/kg	NA*
B-55 (0-2)	4/19/2018	mg/kg	NA*
B-55 (30-32)	4/19/2018	mg/kg	NA*
B-56 (0-2)	4/19/2018	mg/kg	NA*
B-56 (26-28)	4/19/2018	mg/kg	NA*

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Fluoride
Gampio 12	Residential	Ormo	4300
	Com/Ind		47000
	Excavation		79000
B-57 (0-2)	4/19/2018	mg/kg	NA*
B-57 (18-20)	4/19/2018	mg/kg	NA*
B-58 (0-2)	4/19/2018	mg/kg	NA*
B-58 (18-20)	4/19/2018	mg/kg	NA*
B-59 (0-2)	4/19/2018	mg/kg	NA*
B-59 (30-32)	4/19/2018	mg/kg	NA*
B-60 (0-2)	4/20/2018	mg/kg	NA*
B-60 (36-38)	4/20/2018	mg/kg	NA*
B-61 (0-2)	4/20/2018	mg/kg	NA*
B-61 (22-24)	4/20/2018	mg/kg	NA*
B-62 (0-2)	4/20/2018	mg/kg	NA*
B-62 (14-16)	4/20/2018	mg/kg	NA*
B-63 (0-2)	4/23/2018	mg/kg	NA*
B-63 (34-36)	4/23/2018	mg/kg	NA*
B-64 (0-2)	4/23/2018	mg/kg	NA*
B-64 (40-42)	4/23/2018	mg/kg	NA*
B-65 (0-2)	4/23/2018	mg/kg	NA*
B-65 (38-40)	4/23/2018	mg/kg	NA*
B-66 (0-2)	4/23/2018	mg/kg	NA*
B-66 (38-40)	4/23/2018	mg/kg	NA*
B-67 (0-2)	4/23/2018	mg/kg	NA*
B-67 (20-22)	4/23/2018	mg/kg	NA*
B-68 (0-2)	4/24/2018	mg/kg	NA*
B-68 (46-48)	4/24/2018	mg/kg	NA*
B-69 (0-2)	4/24/2018	mg/kg	NA*
B-69 (18-20)	4/24/2018	mg/kg	NA*
B-70 (0-2)	4/24/2018	mg/kg	NA*
B-70 (24-26)	4/24/2018	mg/kg	NA*
B-71 (0-2)	4/24/2018	mg/kg	NA*
B-71 (42-44)	4/24/2018	mg/kg	NA*
B-72 (0-2)	4/24/2018	mg/kg	NA*
B-72 (46-48)	4/24/2018	mg/kg	NA*
B-73 (0-2)	4/24/2018	mg/kg	NA*
B-73 (34-36)	4/24/2018	mg/kg	NA*
B-74 (0-2)	4/25/2018	mg/kg	NA*
B-74 (34-36)	4/25/2018	mg/kg	NA*
B-75 (0-2)	4/25/2018	mg/kg	NA*
B-75 (10-12)	4/25/2018	mg/kg	NA*

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Larenceburg, Indiana ATC Project No. 170EM00522

	,		
Sample ID	Collected Date	Units	Fluoride
	Residential		4300
	Com/Ind		47000
	Excavation		79000
DUP-1	4/18/2018	mg/kg	NA*
DUP-2	4/19/2018	mg/kg	NA*
DUP-3	4/23/2018	mg/kg	NA*
DUP-4	4/24/2018	mg/kg	NA*

Notes:

Samples were analyzed using US EPA SW-846 Method 4500FC. IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

NA = Not analyzed ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact or Migration to Groundwater Screening Level

BOLD/ITALICS = results above IDEM RCG Commercial/Industrial Direct Contact Screening Level

= results above IDEM RCG Excavation Direct Contact Screening Level

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana

ATC Project No. 170EM00522

3-1 (0-2)	Sample ID	Collected Date	Units	Radium-226	Radium-228
3-1 (14-16)	•				
3-2 (0-2)	\ /			` '	` '
3-2 (14-15)				` '	` '
3-3 (0-2)				1 1	` '
3-3 (24-25)					
3-4 (0-2)					` ′
3-4 (18-20)					` ′
3-5 (0-2)					
3-5 (16-18)					
3-6 (0-2) 2/2/2018 PCi/g 3.651 ± 0.635 (0.232) C:NA T:NA 2.280 ± 0.543 (0.261) C:NA T:NA 3-6 (18-20) 2/2/2018 PCi/g 3.469 ± 0.595 (0.287) C:NA T:NA 2.187 ± 0.585 (0.281) C:NA T:NA 3.7 (0-2) 2/1/2018 PCi/g 3.469 ± 0.595 (0.287) C:NA T:NA 2.187 ± 0.585 (0.279) C:NA T:NA 3.7 (20-22) 2/1/2018 PCi/g 3.469 ± 0.595 (0.287) C:NA T:NA 2.187 ± 0.585 (0.279) C:NA T:NA 3-7 (0-2) 2/1/2018 PCi/g 3.199 ± 0.559 (0.215) C:NA T:NA 1.932 ± 0.433 (0.307) C:NA T:NA 3-8 (0-2) 2/2/2018 PCi/g NA*					
3-6 (18-20)					
3-7 (0-2)					
3-7 (20-22)					
3-8 (0-2) 2/2/2018 pCi/g pCi/g	` '				` '
3-8 (8-10) 2/2/2018 pCi/g pCi/					, ,
3-9 (0-2) 2/1/2018 DCi/g NA* NA* NA*					
3-9 (30-32) 2/1/2018 DCi/g NA* NA* NA*					
3-10 (0-2) 2/1/2018 pCi/g pCi/					
3-10 (18-20) 2/1/2018 pCi/g pC					
3-11 (0-2)	` '				
3-11 (32-34)					
3-12 (0-2) 2/1/2018 pCi/g pCi/					
3-12 (20-22) 2/1/2018 pCi/g pC					
3-13 (0-2) 2/1/2018 pCi/g pCi/					
3-13 (28-30) 2/1/2018 pCi/g pC					
1/29/2018 PCi/g NA* NA* NA*					
3-14 (28-30) 1/29/2018 pCi/g NA* NA* 3-15 (0-2) 1/29/2018 pCi/g NA* NA* 3-15 (32-34) 1/29/2018 pCi/g NA* NA* 3-16 (0-2) 1/29/2018 pCi/g NA* NA* 3-16 (0-2) 1/29/2018 pCi/g NA* NA* 3-16 (34-36) 1/29/2018 pCi/g NA* NA* 3-17 (0-2) 1/31/2018 pCi/g 2.668 ± 0.491 (0.331) C:NA T:NA 3.321 ± 0.754 (0.318) C:NA T:NA 3-17 (0-2) 1/31/2018 pCi/g 2.544 ± 0.515 (0.255) C:NA T:NA 2.868 ± 0.911 (0.738) C:NA T:NA 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-23 (0-2) 1/30/2018 pCi/g NA* NA* 3-24 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (0-12) 1/31/2018 pCi/g NA* NA* 3-24 (0-2) 1/31/2018 pCi/g NA* NA* 3-24 (16-18) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.					
3-15 (0-2) 1/29/2018 pCi/g NA* NA* 3-15 (32-34) 1/29/2018 pCi/g NA* NA* 3-16 (0-2) 1/29/2018 pCi/g NA* NA* 3-16 (0-2) 1/29/2018 pCi/g NA* NA* 3-16 (34-36) 1/29/2018 pCi/g NA* NA* 3-17 (0-2) 1/31/2018 pCi/g 2.668 ± 0.491 (0.331) C:NA T:NA 3-17 (32-34) 1/31/2018 pCi/g 2.544 ± 0.515 (0.255) C:NA T:NA 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-23 (0-2) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-24 (0-2) 1/31/2018 pCi/g NA* NA* 3-24 (0-2) 1/31/2018 pCi/g NA* NA* 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 3-24 (16-18) 1					
3-15 (32-34) 1/29/2018 pCi/g NA* NA* NA* 3-16 (0-2) 1/29/2018 pCi/g NA* NA* NA* 3-16 (34-36) 1/29/2018 pCi/g NA* NA* NA* 3-17 (0-2) 1/31/2018 pCi/g 2.668 ± 0.491 (0.331) C:NA T:NA 3.321 ± 0.754 (0.318) C:NA T:NA 3-17 (32-34) 1/31/2018 pCi/g 2.544 ± 0.515 (0.255) C:NA T:NA 2.868 ± 0.911 (0.738) C:NA T:NA 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-18 (26-28) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-24 (0-2) 1/31/2018 pCi/g O.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.4					
3-16 (0-2) 1/29/2018 pCi/g NA* NA* NA*					
3-16 (34-36) 1/29/2018 pCi/g NA* NA* 3-17 (0-2) 1/31/2018 pCi/g 2.668 ± 0.491 (0.331) C:NA T:NA 3-17 (32-34) 1/31/2018 pCi/g 2.544 ± 0.515 (0.255) C:NA T:NA 3-18 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* 3-19 (30-32) 1/30/2018 pCi/g NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* 3-23 (10-12) 1/31/2018 pCi/g NA* NA* 3-24 (16-18) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:					•
3-17 (0-2)					-
3-17 (32-34)					
3-18 (0-2)					
3-18 (26-28) 1/30/2018 pCi/g NA* NA* NA* 3-19 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-19 (30-32) 1/30/2018 pCi/g NA* NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* NA* 3-22 (2-2) 1/30/2018 pCi/g NA* NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* NA* 3-23 (10-12) 1/31/2018 pCi/g NA* NA* NA* 3-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-18 (0-2)				\ /
3-19 (0-2) 1/30/2018 pCi/g NA* NA* NA*	B-18 (26-28)				
3-19 (30-32) 1/30/2018 pCi/g NA* NA* NA* 3-20 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-20 (28-30) 1/30/2018 pCi/g NA* NA* NA* 3-21 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-21 (28-30) 1/30/2018 pCi/g NA* NA* NA* 3-22 (0-2) 1/30/2018 pCi/g NA* NA* NA* 3-22 (24-26) 1/30/2018 pCi/g NA* NA* NA* 3-23 (0-2) 1/31/2018 pCi/g NA* NA* NA* 3-23 (10-12) 1/31/2018 pCi/g NA* NA* NA* 3-24 (0-2) 1/31/2018 pCi/g O.848 ± 0.277 (0.172) C:NA T:NA O.478 ± 0.403 (0.521) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-26 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA	B-19 (0-2)				
B-20 (0-2) 1/30/2018 pCi/g NA* NA* B-20 (28-30) 1/30/2018 pCi/g NA* NA* B-21 (0-2) 1/30/2018 pCi/g NA* NA* B-21 (28-30) 1/30/2018 pCi/g NA* NA* B-22 (0-2) 1/30/2018 pCi/g NA* NA* B-22 (24-26) 1/30/2018 pCi/g NA* NA* B-23 (0-2) 1/31/2018 pCi/g NA* NA* B-23 (10-12) 1/31/2018 pCi/g NA* NA* B-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-19 (30-32)				
B-20 (28-30) 1/30/2018 pCi/g NA* NA* B-21 (0-2) 1/30/2018 pCi/g NA* NA* B-21 (28-30) 1/30/2018 pCi/g NA* NA* B-22 (0-2) 1/30/2018 pCi/g NA* NA* B-22 (24-26) 1/30/2018 pCi/g NA* NA* B-23 (0-2) 1/31/2018 pCi/g NA* NA* B-23 (10-12) 1/31/2018 pCi/g NA* NA* B-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-20 (0-2)		<u> </u>	NA*	NA*
3-21 (0-2)	B-20 (28-30)				
B-21 (28-30) 1/30/2018 pCi/g NA* NA* B-22 (0-2) 1/30/2018 pCi/g NA* NA* B-22 (24-26) 1/30/2018 pCi/g NA* NA* B-23 (0-2) 1/31/2018 pCi/g NA* NA* B-23 (10-12) 1/31/2018 pCi/g NA* NA* B-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-21 (0-2)				
B-22 (0-2) 1/30/2018 pCi/g NA* NA* B-22 (24-26) 1/30/2018 pCi/g NA* NA* B-23 (0-2) 1/31/2018 pCi/g NA* NA* B-23 (10-12) 1/31/2018 pCi/g NA* NA* B-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-21 (28-30)			NA*	NA*
B-22 (24-26) 1/30/2018 pCi/g NA* NA* B-23 (0-2) 1/31/2018 pCi/g NA* NA* B-23 (10-12) 1/31/2018 pCi/g NA* NA* B-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-22 (0-2)			NA*	NA*
3-23 (0-2)	B-22 (24-26)			NA*	NA*
3-23 (10-12)	B-23 (0-2)	1/31/2018		NA*	NA*
3-24 (0-2) 1/31/2018 pCi/g 0.848 ± 0.277 (0.172) C:NA T:NA 0.478 ± 0.403 (0.521) C:NA T:NA 3-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-23 (10-12)			NA*	NA*
B-24 (16-18) 1/31/2018 pCi/g 1.742 ± 0.354 (0.212) C:NA T:NA 1.865 ± 0.443 (0.187) C:NA T:NA	B-24 (0-2)	1/31/2018		0.848 ± 0.277 (0.172) C:NA T:NA	0.478 ± 0.403 (0.521) C:NA T:NA
	B-24 (16-18)				` '
= 15 (5 -) 1	B-25 (0-2)	1/31/2018	pCi/g	1.992 ± 0.469 (0.209) C:NA T:NA	1.404 ± 0.475 (0.303) C:NA T:NA

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana

ATC Project No. 170EM00522

Camarla ID	Callagtad Data		ATC Project No. 170EM00522	D a divers 2000
Sample ID	Collected Date	Units	Radium-226	Radium-228
B-25 (10-12)	1/31/2018	pCi/g	1.620 ± 0.342 (0.172) C:NA T:NA	1.654 ± 0.378 (0.252) C:NA T:NA
B-26 (0-2)	1/31/2018	pCi/g	1.579 ± 0.355 (0.197) C:NA T:NA	1.545 ± 0.448 (0.225) C:NA T:NA
B-26 (24-26)	1/31/2018	pCi/g	1.713 ± 0.332 (0.213) C:NA T:NA	2.070 ± 0.536 (0.439) C:NA T:NA
B-27 (0-2)	2/5/2018	pCi/g	3.016 ± 0.467 (0.235) C:NA T:NA	2.065 ± 0.462 (0.305) C:NA T:NA
B-27 (48-50)	2/5/2018	pCi/g	2.663 ± 0.410 (0.263) C:NA T:NA	3.083 ± 0.619 (0.302) C:NA T:NA
B-28 (0-2)	2/6/2018	pCi/g	2.589 ± 0.475 (0.298) C:NA T:NA	3.198 ± 0.651 (0.561) C:NA T:NA
B-28 (28-30)	2/6/2018	pCi/g	1.045 ± 0.289 (0.227) C:NA T:NA	1.275 ± 0.423 (0.253) C:NA T:NA
B-29 (0-2)	2/6/2018	pCi/g	1.863 ± 0.383 (0.165) C:NA T:NA	1.798 ± 0.399 (0.189) C:NA T:NA
B-29 (14-16)	2/6/2018	pCi/g	1.649 ± 0.379 (0.141) C:NA T:NA	1.804 ± 0.456 (0.273) C:NA T:NA
B-30 (0-2)	2/6/2018	pCi/g	4.338 ± 0.694 (0.214) C:NA T:NA	2.431 ± 0.577 (0.325) C:NA T:NA
B-30 (24-25)	2/6/2018	pCi/g	1.517 ± 0.358 (0.171) C:NA T:NA	1.542 ± 0.437 (0.241) C:NA T:NA
B-31 (0-2)	2/5/2018	pCi/g	2.501 ± 0.381 (0.240) C:NA T:NA	2.060 ± 0.395 (0.290) C:NA T:NA
B-31 (38-40)	2/5/2018	pCi/g	1.722 ± 0.365 (0.228) C:NA T:NA	1.864 ± 0.380 (0.366) C:NA T:NA
B-32 (0-2)	2/5/2018	pCi/g	2.237 ± 0.453 (0.213) C:NA T:NA	1.391 ± 0.373 (0.498) C:NA T:NA
B-32 (38-40)	2/5/2018	pCi/g	1.299 ± 0.287 (0.161) C:NA T:NA	1.452 ± 0.348 (0.287) C:NA T:NA
B-33 (0-2)	2/5/2018	pCi/g	3.039 ± 0.476 (0.226) C:NA T:NA	1.737 ± 0.511 (0.549) C:NA T:NA
B-33 (44-45)	2/5/2018	pCi/g	3.118 ± 0.526 (0.204) C:NA T:NA	2.963 ± 0.567 (0.349) C:NA T:NA
B-34 (0-2)	2/6/2018	pCi/g	3.491 ± 0.611 (0.316) C:NA T:NA	3.107 ± 0.732 (0.397) C:NA T:NA
B-34 (36-38)	2/6/2018	pCi/g	0.684 ± 0.204 (0.127) C:NA T:NA	0.595 ± 0.275 (0.245) C:NA T:NA
B-36 (0-2)	2/6/2018	pCi/g	2.869 ± 0.511 (0.241) C:NA T:NA	2.033 ± 0.472 (0.292) C:NA T:NA
B-36 (12-14)	2/6/2018	pCi/g	1.575 ± 0.343 (0.125) C:NA T:NA	1.643 ± 0.364 (0.242) C:NA T:NA
B-37 (0-2)	2/6/2018	pCi/g	3.212 ± 0.534 (0.232) C:NA T:NA	2.062 ± 0.517 (0.320) C:NA T:NA
B-37 (38-40)	2/6/2018	pCi/g	1.094 ± 0.234 (0.183) C:NA T:NA	1.512 ± 0.486 (0.342) C:NA T:NA
B-38 (0-2)	2/6/2018	pCi/g	2.614 ± 0.480 (0.345) C:NA T:NA	2.003 ± 0.471 (0.324) C:NA T:NA
B-38 (38-40)	2/6/2018	pCi/g	1.356 ± 0.335 (0.181) C:NA T:NA	1.757 ± 0.428 (0.265) C:NA T:NA
Dup-1	2/1/2018	pCi/g	NA*	NA*
DUP-2	2/2/2018	pCi/g	2.219 ± 0.577 (0.342) C:NA T:NA	1.654 ± 0.750 (0.755) C:NA T:NA
DUP-3	2/2/2018	pCi/g	NA*	NA*
Dup-4	2/6/2018	pCi/g	0.538 ± 0.164 (0.222) C:NA T:NA	0.438 ± 0.265 (0.294) C:NA T:NA
B-39 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-39 (28-30)	4/17/2018	pCi/g	NA*	NA*
B-40 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-40 (32-34)	4/17/2018	pCi/g	NA*	NA*
B-41 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-41 (24-26)	4/17/2018	pCi/g	NA*	NA*
B-42 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-42 (18-20)	4/17/2018	pCi/g	NA*	NA*
B-43 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-43 (18-20)	4/17/2018	pCi/g	NA*	NA*
B-44 (0-2)	4/17/2018	pCi/g	NA*	NA*
B-44 (18-20)	4/17/2018	pCi/g	NA*	NA*
B-45 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-45 (14-16)	4/18/2018	pCi/g	NA*	NA*
B-46 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-46 (26-28)	4/18/2018	pCi/g	NA*	NA*
B-47 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-47 (26-28)	4/18/2018	pCi/g	NA*	NA*
B-48 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-48 (22-24)	4/18/2018	pCi/g	NA*	NA*
= ·• (= - - ·)	.,, 2010	F 5" 9	, .	, .

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana

ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Radium-226	Radium-228
B-49 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-49 (26-28)	4/18/2018	pCi/g	NA*	NA*
B-50 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-50 (22-24)	4/18/2018	pCi/g	NA*	NA*
B-51 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-51 (14-16)	4/18/2018	pCi/g	NA*	NA*
B-52 (0-2)	4/18/2018	pCi/g	NA*	NA*
B-52 (30-32)	4/18/2018	pCi/g	NA*	NA*
B-53 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-53 (24-26)	4/19/2018	pCi/g	NA*	NA*
B-54 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-54 (26-28)	4/19/2018	pCi/g	NA*	NA*
B-55 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-55 (30-32)	4/19/2018	pCi/g	NA*	NA*
B-56 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-56 (26-28)	4/19/2018	pCi/g	NA*	NA*
B-57 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-57 (18-20)	4/19/2018	pCi/g	NA*	NA*
B-58 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-58 (18-20)	4/19/2018	pCi/g	NA*	NA*
B-59 (0-2)	4/19/2018	pCi/g	NA*	NA*
B-59 (30-32)	4/19/2018	pCi/g	NA*	NA*
B-60 (0-2)	4/20/2018	pCi/g	NA*	NA*
B-60 (36-38)	4/20/2018	pCi/g	NA*	NA*
B-61 (0-2)	4/20/2018	pCi/g	NA*	NA*
B-61 (22-24)	4/20/2018	pCi/g	NA*	NA*
B-62 (0-2)	4/20/2018	pCi/g	NA*	NA*
B-62 (14-16)	4/20/2018	pCi/g	NA*	NA*
B-63 (0-2)	4/23/2018	pCi/g	NA*	NA*
B-63 (34-36)	4/23/2018	pCi/g	NA*	NA*
B-64 (0-2)	4/23/2018	pCi/g	NA*	NA*
B-64 (40-42)	4/23/2018	pCi/g	NA*	NA*
B-65 (0-2)	4/23/2018	pCi/g	NA*	NA*
B-65 (38-40)	4/23/2018	pCi/g	NA*	NA*
B-66 (0-2)	4/23/2018	pCi/g	NA*	NA*
B-66 (38-40)	4/23/2018	pCi/g	NA*	NA*
B-67 (0-2)	4/23/2018	pCi/g	NA*	NA*
B-67 (20-22)	4/23/2018	pCi/g	NA*	NA*
B-68 (0-2)	4/24/2018	pCi/g	NA*	NA*
B-68 (46-48)	4/24/2018	pCi/g	NA*	NA*
B-69 (0-2)	4/24/2018	pCi/g	NA*	NA*
B-69 (18-20)	4/24/2018	pCi/g	NA*	NA*
B-70 (0-2)	4/24/2018	pCi/g	NA*	NA*
B-70 (24-26)	4/24/2018	pCi/g	NA*	NA*
B-71 (0-2)	4/24/2018	pCi/g	NA*	NA*
B-71 (42-44)	4/24/2018	pCi/g	NA*	NA*
B-72 (0-2)	4/24/2018	pCi/g	NA*	NA*
B-72 (46-48)	4/24/2018	pCi/g	NA*	NA*
B-73 (0-2)	4/24/2018	pCi/g	NA*	NA*

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana

ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Radium-226	Radium-228
B-73 (34-36)	4/24/2018	pCi/g	NA*	NA*
B-74 (0-2)	4/25/2018	pCi/g	NA*	NA*
B-74 (34-36)	4/25/2018	pCi/g	NA*	NA*
B-75 (0-2)	4/25/2018	pCi/g	NA*	NA*
B-75 (10-12)	4/25/2018	pCi/g	NA*	NA*
DUP-1	4/18/2018	pCi/g	NA*	NA*
DUP-2	4/19/2018	pCi/g	NA*	NA*
DUP-3	4/23/2018	pCi/g	NA*	NA*
DUP-4	4/24/2018	pCi/g	NA*	NA*

Results are presented in picocuries per gram (pCi/g). Samples were analyzed using US EPA SW-846 Method 901.1

NA = Not analyzed

ND = Not detected

Table 1G Soil Analytical Summary (PAHs)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

							7110	Projectiv	10. 170L	10100022	-									
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
·	Residential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	3400	3400	15	250	340	53	NE	2500
	Com/Ind		45000	NE	100000	210	21	210	NE	2100	21000	21	30000	30000	210	390	3000	170	NE	23000
	Excavation		100000	NE	100000	12000	500	12000	NE	100000		1200	68000	68000	12000	390	6800	3100	NE	51000
Soil	MTG Residential		110	NE	1200	2.1	4.7	60	NE	590	1800	19	1800	110	200	1.2	3.7	0.11	NE	260
B-39 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0188	0.0181	0.0231	0.0130	0.0163	0.0237	ND	0.0300	ND	0.0118	0.0209	0.0225	0.0181	0.0243	0.0256
B-39 (28-30)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-40 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0073	0.0089	0.010	0.0072	0.0068	0.0114	ND	0.0152	ND	ND	0.0136	0.0135	0.0119	0.0136	0.0131
B-40 (32-34)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-41 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0165	0.0179	0.0195	0.0135	0.0158	0.0222	ND	0.0347	ND	0.0115	0.0275	0.0289	0.0241	0.0283	0.0272
B-41 (24-26)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-42 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0083	0.0098	0.0109	0.0080	0.0076	0.0124	ND	0.0174	ND	0.0063	0.0145	0.0158	0.0126	0.0148	0.0143
B-42 (18-20)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-43 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0130	0.0144	0.0144	0.0105	0.0138	0.0190	ND	0.0287	ND	0.0089	0.0285	0.0307	0.0237	0.0312	0.0234
B-43 (18-20)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-44 (0-2)	4/17/2018	mg/kg	ND	ND	ND	0.0115	0.0129	0.0128	0.0098	0.0141	0.0172	ND	0.0255	ND	0.0084	0.0240	0.0247	0.0191	0.0246	0.0206
B-44 (18-20)	4/17/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-45 (0-2)	4/18/2018	mg/kg	ND	ND	ND	ND	0.0062	0.0068	ND	ND	0.0074	ND	0.0108	ND	ND	0.0088	0.0087	0.0082	0.0084	0.0091
B-45 (14-16)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-46 (0-2)	4/18/2018	mg/kg	ND	ND	ND	0.0077	0.0087	0.0107	0.0065	0.0065	0.0107	ND	0.0167	ND	ND	0.0114	0.0113	0.0107	0.0123	0.0132
B-46 (26-28)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-47 (0-2)	4/18/2018	mg/kg	ND	ND	ND	0.0084	0.0104	0.0127	0.0079	0.0080	0.0129	ND	0.0194	ND	0.0065	0.0155	0.0159	0.0130	0.0150	0.0157
B-47 (26-28)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0070	0.0091	0.0145	0.0139	ND
B-48 (0-2)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	0.0068	ND	ND	0.0078	ND	0.0121	ND	ND	0.010	0.0107	0.0089	0.0092	0.010
B-48 (22-24)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-1	4/10/2010	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-49 (0-2)	4/18/2018	mg/kg	ND	ND	0.0064	0.0185	0.0219	0.0177	0.0155	0.0240	0.0251	ND	0.0365	ND	0.0133	0.0329	0.0348	0.0328	0.0278	0.0307
B-49 (26-28)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-50 (0-2)	4/18/2018	mg/kg	ND	0.0072	ND	0.0205	0.0228	0.0268			0.0283	ND	0.0413		0.0145		0.0422	0.0382	0.0363	0.0438
B-50 (22-24)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-51 (0-2)	4/18/2018	mg/kg	ND	0.0247	0.0302	0.0810	0.0715	0.0711	0.0417	0.0807		0.0166	0.139	ND	0.0388		0.020	0.0175	0.0343	0.133
B-51 (14-16)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-52 (0-2)	4/18/2018	mg/kg	ND	0.0129	0.0166	0.0455	0.0534	0.0572		0.0508		0.0133	0.0738	ND	0.0335		0.0568	0.0497	0.0510	0.0623
B-52 (30-32)	4/18/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-53 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 1G Soil Analytical Summary (PAHs)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

								rojootr												
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
	Residential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	3400	3400	15	250	340	53	NE	2500
	Com/Ind		45000	NE	100000	210	21	210	NE	2100	21000	21	30000	30000	210	390	3000	170	NE	23000
	Excavation		100000	NE	100000	12000	500	12000	NE	100000	100000	1200	68000	68000	12000	390	6800	3100	NE	51000
Soil	MTG Residential		110	NE	1200	2.1	4.7	60	NE	590	1800	19	1800	110	200	1.2	3.7	0.11	NE	260
B-53 (24-26)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-54 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0089	0.0094	ND	ND	ND
B-54 (26-28)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-55 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-55 (30-32)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-56 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-56 (26-28)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-57 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0085	0.0094	0.0081	ND	ND
B-57 (18-20)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-58 (0-2)	4/19/2018	mg/kg	ND	ND	ND	0.0060	0.0066	0.0081	0.0061	0.0063	0.0096	ND	0.0140	ND	ND	0.0149	0.0154	0.0120	0.0118	0.0112
B-58 (18-20)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DUP-2	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-59 (0-2)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0342	ND	ND	ND	ND	ND	ND	ND
B-59 (30-32)	4/19/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-60 (0-2)	4/20/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	0.0065	ND	0.0093	ND	ND	0.0111	0.0152	0.0101	0.0154	0.0072
B-60 (36-38)	4/20/2018	mg/kg	ND	ND	0.0097	0.0290	0.0315	0.0264	0.0216		0.0337	ND	0.0501	ND	0.0176	0.0176	0.0195		0.0300	0.0468
B-61 (0-2)	4/20/2018	mg/kg	ND	ND	0.0096	0.0310	0.0328	0.0380	0.0244	0.0247	0.0426	0.0073	0.0565	ND	0.0196	0.0292	0.0324	0.0253	0.0444	0.0512
B-61 (22-24)	4/20/2018	mg/kg	0.0102	ND	0.0185	0.0330	0.0269	0.0278	0.0169		0.0460	0.0059	0.0757	0.0120		0.0933	0.114	0.0871	0.0592	0.0641
B-62 (0-2)	4/20/2018	mg/kg	0.0211	0.0117	0.0527	0.124	0.0955	0.125	0.0564		0.148	0.0272	0.277		0.0478	0.414	0.537	0.354	0.327	0.223
B-62 (14-16)	4/20/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-63 (0-2)	4/23/2018	mg/kg	ND	ND	0.0069	0.0068	ND	ND	ND	ND	0.0090	ND	0.0145	ND	ND	0.182	0.241	0.182	0.0581	0.0120
B-63 (34-36)	4/23/2018	mg/kg	ND	ND	0.0062	0.0164		0.0143				ND	0.0354	ND	0.010			0.0149	0.0227	0.0316
B-64 (0-2)	4/23/2018	mg/kg	0.0094	ND	0.0219	0.0269	0.0163					ND	0.0534	0.0065		0.0687			0.174	0.0492
B-64 (40-42)	4/23/2018	mg/kg	0.0194		0.104	0.135	0.128			0.107	0.183	0.0294	0.340		0.0819		0.395	0.422	0.380	0.248
B-65 (0-2)	4/23/2018	mg/kg	0.0085	0.0056	0.0194	0.0304	0.0204			0.0159		ND	0.0542	-	0.0073		0.341	0.259	0.211	0.0472
B-65 (38-40)	4/23/2018	mg/kg	ND	ND	ND	0.0171	0.0170	0.0188				ND	0.0334	ND	0.0105				0.0259	0.0273
B-66 (0-2)	4/23/2018	mg/kg	ND	0.0115	0.0075	0.0361		0.0386				0.0092	0.0511	ND	0.0233			0.0229	0.0380	
B-66 (38-40)			ND	ND	0.0067	0.0166		0.0176				ND	0.0293	ND	0.0117	ND		0.0084		0.0213
DUP-3	4/23/2018	mg/kg	ND	ND	ND	0.0138	0.0128			0.0102		ND	0.0306	ND	0.0089	0.0082			0.0174	
B-67 (0-2)	4/23/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.0273
- 0. (0 <i>L</i>)	1,20,2010	9/119	. ,,,,	.,,,	.,,		.,,,	. 10	. 10		. 10		. 10	1 110	. 10	. 10		. 10	0.0270	0.0270

Table 1G

Soil Analytical Summary (PAHs)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

							7110	Projectiv	0. 170L	.10100022	_									
Sample ID	Collected Date	Units	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
	Residential		5000	NE	25000	15	1.5	15	NE	150	1500	1.5	3400	3400	15	250	340	53	NE	2500
	Com/Ind		45000	NE	100000	210	21	210	NE	2100	21000	21	30000	30000	210	390	3000	170	NE	23000
	Excavation		100000	NE	100000	12000	500	12000	NE	100000	100000	1200	68000	68000	12000	390	6800	3100	NE	51000
Soil	MTG Residential		110	NE	1200	2.1	4.7	60	NE	590	1800	19	1800	110	200	1.2	3.7	0.11	NE	260
B-67 (20-22)	4/23/2018	mg/kg	ND	ND	ND	ND	ND	0.0060	ND	ND	0.0069	ND	0.0092	ND	ND	ND	0.0060	ND	0.0068	0.0081
B-68 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-68 (46-48)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-69 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0515	0.0556	0.0553	0.0161	ND
B-69 (18-20)	4/24/2018	mg/kg	0.0627	0.0185	0.0414	0.0419	0.0391	0.0345	0.0296	0.0295	0.0569	0.0076	0.0960	0.0753	0.0178	0.285	0.372	0.206	0.309	0.0920
B-70 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	0.0059	ND	ND	ND	ND	0.0096	0.0095	0.0073	0.0089	ND
B-70 (24-26)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0760	0.0812	0.0497	0.0238	ND
DUP-4		mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0496		ND	ND	ND
B-71 (0-2)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	0.0764	ND	0.332	ND	ND	0.0724	0.0784	ND	0.109	0.213
B-71 (42-44)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-72 (0-2)	4/24/2018	mg/kg	0.0547	ND	0.0764	0.0359	0.0192	0.0296	0.0131	0.0154	0.0419	ND	0.175	0.0455			0.0616		0.254	0.103
B-72 (46-48)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-73 (0-2)	4/24/2018	mg/kg	0.0143	ND	0.0377	0.0396	0.0322	0.0312	0.0178		0.0442	0.0057	0.141	0.0144	0.0168		0.0169		0.119	0.0915
B-73 (34-36)	4/24/2018	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-74 (0-2)	4/25/2018	mg/kg	0.948	0.0945	2.60	7.28	5.54	6.57	3.63	5.44	8.68	1.64	24.9	1.42	3.61	0.339	0.387	0.436	23.1	15.7
B-74 (34-36)	4/25/2018	mg/kg	ND	ND	0.0119	0.0281	0.0273	0.0294	0.0210		0.0388	0.0074	0.0541	ND	0.0180	•	0.0566		0.0507	0.0440
B-75 (0-2)	4/25/2018	mg/kg	0.0546	ND	0.245	0.536	0.502	0.960	0.412	0.953	0.748	0.147	1.82	0.0644	0.336	0.119	0.116	0.106	1.50	1.21
B-75 (10-12)	4/25/2018	mg/kg	ND	ND	0.0302	0.0433	0.0366	0.0441	ND	0.0298	0.0531	ND	0.110	ND	ND	0.280	0.114	0.0751	0.143	0.0959

Note:

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

Polycyclic Aromatic Hydrocarbons (PAHs) were analyzed using EPA SW-846 Method 8270SIM

Constituents not detected above laboratory detection limits are not listed in the table.

ND = Not Detected

NA = Not Analyzed for that constituent

BOLD = results above IDEM RCG Residential Screening Levels and/or Soil Migration to Groundwater Screening Levels

BOLD/ITALICs = results above IDEM RCG Commercial / Industrial Direct Exposure Level **BOLD/SHADED** = results above IDEM RCG Excavation Worker Direct Exposure Level

Soil Analytical Summary (6/2018 Sampling Event, VOCs) Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station

800 AEP Drive, Lawrenceburg, Indiana ATC Project No. 170EM00522

		4)						
Sample ID	Acetone	Isopropylbenzene (Cumene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	Toluene	Trichlorofluoromethane
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Residential	85000	270	110	260	NE	150	820	1200
Soil MTG Residential	57	15	64	25	NE	120	14	66
Com/Ind	100000	270	110	260	NE	150	820	1200
Excavation	100000	270	110	260	NE	150	820	1200
B-76 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-76 (48-50)	ND	ND	ND	ND	ND	ND	ND	ND
B-77 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-77 (32-34)	ND	ND	ND	ND	ND	ND	ND	ND
B-78 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-78 (48-50)	ND	ND	ND	ND	ND	ND	ND	ND
B-79 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-79 (6-8)	ND	ND	ND	ND	ND	ND	ND	ND
B-80 (0-2)	0.216	ND	ND	ND	0.0115	ND	0.0075	0.0072
B-80 (34-36)	0.119	ND	ND	ND	ND	ND	ND	ND
B-81 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-81 (16-18)	ND	ND	ND	ND	ND	ND	ND	ND
B-82 (0-2)	0.274	ND	ND	ND	ND	ND	ND	ND
B-82 (6-8)	ND	0.587	1.18	1.18	ND	0.824	ND	ND
B-83 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-83 (8-10)	ND	ND	ND	ND	ND	ND	ND	ND
B-84 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-84 (26-28)	ND	ND	ND	ND	ND	ND	ND	ND
B-85 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-85 (20-22)	ND	ND	ND	ND	ND	ND	ND	ND
B-86 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND
B-86 (24-26)	ND	ND	ND	ND	ND	ND	ND	ND
B-87 (40-42)	ND	ND	ND	ND	ND	ND	ND	ND
B-87 (5-6)	ND	ND	ND	ND	ND	ND	ND	ND
B-88 (0-2)	0.166	ND	ND	ND	ND	ND	ND	ND
B-88(40-42)	ND	ND	ND	ND	ND	ND	ND	ND
DUP-1	0.166	ND	ND	ND	ND	ND	ND	ND

Notes

Samples were analyzed using US EPA SW-846 Methods 8260

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact and/or Migration to Groundwater Screening Level(s)

BOLD/ITALICS = results above IDEM Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

Soil Analytical Summary (6/2018 Sampling Event, Metals)
Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

Sample ID	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Mercury
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Residential	9.5	21000	99	NE	400	550	3.1
Soil MTG Residential	5.9	1700	7.5	1000000	270	5.3	2.1
Com/Ind	30	100000	980	NE	800	5800	3.1
Excavation	920	100000	1900	NE	1000	9800	3.1
B-76 (0-2)	10.4	156	ND	21.8	22.2	ND	ND
B-76 (48-50)	9.1	141	ND	31.4	14.1	ND	ND
B-77 (0-2)	10.1	168	ND	21.5	16.3	ND	ND
B-77 (32-34)	9.0	132	ND	21.4	17.6	ND	ND
B-78 (0-2)	10.4	178	ND	21.6	18.5	ND	ND
B-78 (48-50)	8.8	125	ND	24.1	13.2	ND	ND
B-79 (0-2)	30.9	399	1.6	59.6	103	104	ND
B-79 (6-8)	7.6	90.6	ND	31.3	17.6	12.6	ND
B-80 (0-2)	6.4	110	ND	13.1	50.4	7.3	ND
B-80 (34-36)	6.6	79.2	ND	19.6	15.3	2.5	ND
B-81 (0-2)	7.7	264	ND	107	108	14.7	ND
B-81 (16-18)	4.3	72.0	ND	6.7	5.5	ND	ND
B-82 (0-2)	14.2	170	1.0	49.6	153	16.0	ND
B-82 (6-8)	5.3	87.2	ND	13.0	10.9	ND	ND
B-83 (0-2)	23.4	162	ND	11.3	7.3	5.9	ND
B-83 (8-10)	13.4	120	ND	16.3	3.8	ND	ND
B-84 (0-2)	10.4	57.5	ND	10.4	7.6	ND	ND
B-84 (26-28)	1.3	103	ND	15.9	ND	ND	ND
B-85 (0-2)	11.9	256	ND	15.3	3.8	ND	ND
B-85 (20-22)	5.5	82.0	ND	12.8	9.3	ND	ND
B-86 (0-2)	56.9	262	1.3	59.3	65.4	4.7	ND
B-86 (24-26)	11.9	77.2	ND	24.4	9.6	1.5	ND
B-87 (40-42)	7.0	117	ND	14.8	9.7	ND	ND
B-87 (5-6)	5.6	116	ND	15.0	12.4	ND	1.0
B-88 (0-2)	9.7	128	ND	59.7	31.0	ND	ND
B-88(40-42)	7.5	119	ND	17.2	10.5	ND	ND
DUP-1	6.2	69.8	ND	16.2	22.7	1.3	ND

Notes:

Samples were analyzed using US EPA SW-846 Methods 6010B and 7470

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact and/or Migration to Groundwater Screening Level(s)

BOLD/ITALICS = results above IDEM Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

Soil Analytical Summary (6/2018 Sampling Event, PCBs)
Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

	PCB-1242 (Aroclor 1242)	PCB-1254 (Aroclor 1254)	PCB-1260 (Aroclor 1260)
	12	1 2	1 2
	<u>o</u>	<u> </u>	
0 1 15	õ	0	8
Sample ID	≤	. ≤	.
	42	54	09
	-12	1 2	1 - 2
	Ġ	B	l ė
		_	
Units	mg/kg	mg/kg	mg/kg
Residential	3.2	1.7	3.4
Soil MTG Residential	.24	.41	1.1
Com/Ind Excavation	9.5	9.7	9.9
	560	33	570
B-76 (0-2)	ND ND	ND ND	ND ND
B-76 (48-50)	ND ND	ND ND	ND ND
B-77 (0-2) B-77 (32-34)	ND ND	ND ND	ND ND
B-77 (32-34) B-78 (0-2)	ND ND	ND ND	ND ND
\ /	ND ND		ND ND
B-78 (48-50) B-79 (0-2)	0.683	ND ND	ND ND
B-79 (0-2) B-79 (6-8)	0.663 ND	ND	ND ND
B-80 (0-2)	ND	ND	ND
B-80 (34-36)	ND	ND	ND
B-81 (0-2)	0.298	0.131	0.160
B-81 (16-18)	0.230 ND	ND	ND
B-82 (0-2)	0.574	0.300	0.467
B-82 (6-8)	ND	ND	ND
B-83 (0-2)	ND	ND	ND
B-83 (8-10)	ND	ND	ND
B-84 (0-2)	ND	ND	ND
B-84 (26-28)	ND	ND	ND
B-85 (0-2)	ND	ND	ND
B-85 (20-22)	ND	ND	ND
B-86 (0-2)	0.292	0.121	ND
B-86 (24-26)	ND	ND	ND
B-87 (40-42)	ND	ND	ND
B-87 (5-6)	0.180	ND	ND
B-88 (0-2)	0.121	ND	ND
B-88(40-42)	ND	ND	ND
DUP-1	0.131	ND	ND
		-	•

Notes:

Samples were analyzed using US EPA SW-846 Methods 8082

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact and/or Migration to Groundwater Screening Level(s)

BOLD/ITALICS = results above IDEM Commercial/Industrial Direct Contact Screening Level

BOLD/SHADED = results above IDEM RCG Excavation Direct Contact Screening Level

Soil Analytical Summary (6/2018 Sampling Event, PAHs)
Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

Sample ID Units	mg/kg	bay/bay/bathylnaphthalene	kg/kg	Mcenaphthylene	mg/kg	ba//bu		ba//kg	mg/kg	kg//Benzo(k)fluoranthene	Chrysene	by/banz(a,h)anthracene	mg/kg	eueuoni <u>H</u>	md/kd	hthalene	mg/kg	mg/kg
	250	340		NE	25000	15	1.5	15	NE	150	1500			3400	115	53	NE	2500
Soil MTG Residential	1.2	3.7	110	NE	1200	2.1	4.7	60	NE	590	1800	19	1800	110	200	.11	NE	260
	390	3000		NE	100000	210	21	210	NE	2100	21000	21	30000	30000	210	170	NE	23000
		6800		NE	100000	12000	500	12000	NE	100000	100000			68000	12000	3100	NE	51000
				ND	ND	ND		ND	ND	ND	ND			ND	ND	ND	ND	ND
B-76 (48-50)		ND		ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
B-77 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-77 (32-34)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-78 (0-2)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-78 (48-50)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
B-79 (0-2)	ND	ND		ND	ND	0.0284	ND	ND	ND	ND	0.0314		0.0675	ND	ND	ND	0.0645	0.0621
B-79 (6-8)	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		0.0564	ND	ND	ND	0.0679	0.0433
B-80 (0-2)	0.577	0.800		ND	0.310	0.315	0.245	0.179	0.134	0.257	0.309		0.928	0.207	0.129	0.881	1.24	0.711
B-80 (34-36)	0.0311	0.0424	ND	ND	0.0097	0.0122	0.0089	ND	ND	0.0105	0.0131		0.0346	ND	ND	0.0629	0.0358	0.0308
B-81 (0-2)	0.0943	0.125		ND	0.187	0.348	0.281	0.200	0.173	0.300	0.363		0.873	0.0655	0.149	0.104	0.538	0.689
B-81 (16-18)	0.287	0.0949	1.73	0.433	1.29	0.0511		0.0242	0.0171	0.0322	0.0732		0.314	2.77	0.0143	ND	3.52	0.478
	0.143	0.195	0.519	ND	0.714	1.29	1.10	0.860	0.621	1.10	1.35	0.313	3.47	0.360	0.572	0.219	2.57	2.53
	6.23	10.1	0.373	0.122	0.393	0.0167	0.0132	0.0096	0.0078	0.0140	0.0251		0.0889	0.581	0.0081	ND	2.49	0.310
	0.235	0.331	ND	ND	0.0135	0.0222		0.0118	0.0135	0.0139	0.0274		0.0379	0.0074	0.0077	0.225	0.125	0.0363
()	0.143	0.166		ND	0.0565	0.0674	0.0351	ND	ND	ND	0.0757		0.110	0.0384	ND	0.0903	0.319	0.125
		0.0189		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	0.0123	0.0116	ND
B-84 (26-28)	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
B-85 (0-2)	0.0519	0.0738	1	ND	ND	0.0282	ND	ND	ND	ND	0.0306		0.0638	ND	ND	0.0534	0.0790	0.0534
	0.0191	0.0230	ND	ND	0.0065	0.0090	0.0070	ND	ND	0.0083	0.0105		0.0232	ND	ND	0.0182	0.0287	0.0198
	0.101	0.130	ND	ND	ND	0.0403	ND	ND	ND	0.0313	0.0467		0.0904	ND	ND	0.0803	0.144	0.0744
B-86 (24-26)				0.0067	0.0192	0.0352		0.0302	0.0205	0.0398	0.0466		0.0530	0.0122	0.0182	0.0259	0.0867	0.0437
B-87 (40-42)	ND	ND		ND	ND 0.0400	ND	ND 0.0540	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND 0.054
- ()	0.226	0.276		ND	0.0482	0.116	0.0543	0.0785	0.0336	0.0610	0.142		0.469	ND	ND	0.170	0.327	0.351
B-88 (0-2)		ND		ND	0.0347	0.156	0.152	0.111	0.143	0.139	0.217		0.454	ND	0.0689	ND	0.132	0.343
B-88(40-42)	ND	ND		ND	ND 0.500	ND	ND	ND 0.754	ND	ND	ND		ND	ND	ND	ND	ND	ND
DUP-1	0.218	0.284	0.397	ND	0.539	1.19	0.956	0.754	0.542	0.997	1.28	0.273	2.67	0.258	0.489	0.469	2.23	2.22

Notes:

Samples were analyzed using US EPA SW-846 Methods 8270 SIM

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

ND = Not detected

BOLD = results above IDEM RCG Residential Direct Contact and/or Migration to Groundwater Screening Level(s)

BOLD/ITALICS = results above IDEM Commercial/Industrial Direct Contact Screening Level **BOLD/SHADED** = results above IDEM RCG Excavation Direct Contact Screening Level

Table 1I

Soil Arsenic Concentrations Exceeding IDEM RCG Com/Ind Screening Levels Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana ATC Project No. 170EM00522

						Sa	ample	ldentifi	cation a	and Sam	ple Dep	oth (fee	et)					
Analyte	B-12 (0-2)	B-13 (0-2)	B-14 (0-2)	B-15 (0-2)	B-18 (0-2)	B-20 (0-2)	B-22 (0-2)	B-27 (0-2)	B-30 (0-2)	B-30 (24-25)	B-32 (0-2)	B-33 (0-2)	B-33 (44-45)	B-34 (0-2)	B-37 (38-40)	B-51 (0-2)	B-79 (0-2)	B-86 (0-2)
Arsenic (mg/kg)	31.8	35.8	62.5	34.5	38.0	37.2	38.2	60.6	105.0	31.6	41.0	45.9	31.4	30.4	42.7	31.9	30.9	56.9

Notes:

Samples were analyzed using US EPA SW-846 Method 7471

IDEM RCG Com/Ind = Indiana Department of Environmental Management Remediation Closure Guide Commercial/Industrial Screening Levels **Bold/Italics** = results above IDEM RCG Commercial/Industrial Screening Level of 30 mg/kg

Table 2A Groundwater Analytical Summary (VOCs)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

Sample ID	Collected Date	Units	1,1-Dichloroethane	4 1,1-Dichloroethene	1,1,1-Trichloroethane
	ndwater Tap Residen		28	-	200
	sure Groundwater Re		130	300	13000
B-3	ure Groundwater Cor 2/9/2018		550 ND	1300 ND	54000 ND
B-6	2/9/2018	ug/L ug/L	ND ND	ND ND	ND ND
B-7	2/12/2018	•	ND ND	ND ND	ND ND
B-7 B-9	2/12/2018	ug/L	ND ND	ND ND	ND ND
B-11	2/12/2018	ug/L ug/L	ND ND	ND ND	ND ND
B-13	2/12/2018	·	ND ND	ND ND	ND ND
B-13 B-14	2/13/2018	ug/L ug/L	ND	ND ND	ND ND
B-14 B-15	2/13/2018	ug/L ug/L	ND ND	ND ND	ND ND
B-15	2/13/2018	ug/L ug/L	ND ND	ND ND	ND ND
B-19	2/13/2018	ug/L	ND	ND	ND ND
B-19 B-21	2/13/2018	ug/L ug/L	ND	ND ND	ND ND
B-23	2/14/2018	ug/L	ND	ND	ND
B-24	2/15/2018	ug/L	ND	ND	ND
B-26	2/15/2018	ug/L	ND	ND	ND
B-27	2/20/2018	ug/L	ND	ND	ND
B-34	2/20/2018	ug/L	ND	ND	ND
B-36	2/15/2018	ug/L	ND	ND	ND
B-38			ND	ND	ND
DUP	2/19/2018	ug/L	ND	ND	ND

TMW-40	4/25/2018	ug/L	ND	ND	ND
TMW-43	4/25/2018	ug/L	ND	ND	ND
TMW-45	4/25/2018	ug/L	ND	ND	ND
TMW-47	4/25/2018	ug/L	ND	ND	ND
TMW-50	4/25/2018	ug/L	ND	ND	ND
TMW-52	4/24/2018	ug/L	ND	ND	ND
TMW-55	4/26/2018	ug/L	ND	ND	ND
TMW-56	4/26/2018	ug/L	ND	ND	ND
TMW-57	4/24/2018	ug/L	ND	ND	ND
TMW-59	4/26/2018	ug/L	ND	ND	ND
TMW-63	4/27/2018	ug/L	ND	ND	ND
TMW-66	4/27/2018	ug/L	ND	ND	ND
TMW-67	4/30/2018	ug/L	ND	ND	ND
DUP-1	4/30/2010	ug/L	ND	ND	ND
TMW-71	4/26/2018	ug/L	76.5	19.9	33.5
TMW-72	4/26/2018	ug/L	ND	ND	ND
TMW-74	5/1/2018	ug/L	ND	ND	ND

Note:

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

Volatile Organic Compounds (VOCs) were analyzed using EPA SW-846 Method 8260B

ND = Not Detected

BOLD = results above IDEM RCG Groundwater Tap Residential Screening Level

BOLD/ITALICs = results above IDEM RCG Vapor Exposure - Residential

BOLD/SHADED = results above IDEM RCG Vapor Exposure - Commercial/Industrial

Table 2B Groundwater/Surface Water Analytical Summary (Metals)

Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Analysis	Antimony	Arsenic	Barium	Boron	Cadmium	Chromium	Lead	Lithium	Manganese	Molybdenum	Nickel	Selenium
	Groundwater Tap F	Residential		6	10	2000	4000	5	100	15	40	NE	100	390	50
B-3	2/9/2018	ug/L	Total	ND	ND	43.3	406	ND	ND	ND	29.4	610	ND	ND	ND
B-6	2/9/2018	ug/L	Total	ND	ND	22.2	102	ND	ND	ND	ND	20.9	ND	ND	ND
B-7	2/12/2018	ug/L	Total	ND	ND	57.3	529	ND	ND	ND	65.9	737	ND	50.9	ND
B-9	2/12/2018	ug/L	Total	NA*	ND	52.4	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-11	2/12/2018	ug/L	Total	NA*	105	184	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-13	2/12/2018	ug/L	Total	NA*	73.6	79.8	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-14	2/13/2018	ug/L	Total	NA*	128	99.6	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-15	2/13/2018	ug/L	Total	NA*	113	156	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-16	2/13/2018	ug/L	Total	NA*	54.4	333	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-19	2/13/2018	ug/L	Total	NA*	92.4	225	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-21	2/14/2018	ug/L	Total	NA*	129	384	NA*	ND	30.2	21.4	NA*	NA*	NA*	NA*	ND
B-23	2/14/2018	ug/L	Total	NA*	ND	89.8	NA*	ND	ND	ND	NA*	NA*	NA*	NA*	ND
B-24	2/15/2018	ug/L	Total	ND	ND	108	126	ND	ND	ND	ND	3830	ND	ND	ND
B-26	2/15/2018	ug/L	Total	ND	ND	428	508	ND	ND	ND	ND	2240	ND	14.3	ND
B-27	2/20/2018	ug/L	Total	6.6	139	137	10900	ND	ND	ND	117	23.2	477	13.6	ND
B-34	2/20/2018	ug/L	Total	ND	ND	85.1	524	ND	ND	ND	27.1	1420	62.1	ND	ND
B-36	2/15/2018	ug/L	Total	ND	122	56.3	4260	ND	ND	ND	36.8	273	305	ND	ND
B-38		·	Total	ND	82.1	75.7	1450	ND	ND	ND	33.8	623	183	ND	ND
DUP	2/19/2018	ug/L	Total	ND	81.6	77.1	1410	ND	ND	ND	33.9	610	179	ND	ND
TMW-40	4/25/2018	ug/L	Total	NA*	ND	105	498	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-43	4/25/2018	ug/L	Total	NA*	ND	48.7	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-45	4/25/2018	ug/L	Total	NA*	ND	31.7	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-47	4/25/2018	ug/L	Total	NA*	ND	93.4	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-50	4/25/2018	ug/L	Total	NA*	ND	102	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-52	4/24/2018	ug/L	Total	NA*	ND	111	281	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-55	4/26/2018	ug/L	Total	NA*	ND	95.6	654	ND	ND	12.8	ND	NA*	ND	NA*	ND
TMW-56	4/26/2018	ug/L	Total	NA*	ND	74.6	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-57	4/24/2018	ug/L	Total	NA*	ND	85.9	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-59	4/26/2018	ug/L	Total	NA*	ND	141	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
TMW-63	4/27/2018	ug/L	Total	NA*	13.1	225	166	ND	ND	13.9	ND	NA*	17.4	NA*	ND
1 10100-63	4/21/2010	ug/L	Dissoved	NA*	ND	128	161	ND	ND	ND	ND	NA*	17.5	NA*	ND
TMW-66	4/27/2018	ua/l	Total	NA*	81.7	611	ND	ND	39.1	62.8	29.6	NA*	19.5	NA*	ND
1 10100-00	4/21/2010	ug/L	Dissolved	NA*	ND	240	ND	ND	ND	ND	ND	NA*	22.0	NA*	ND
TMW-67			Total	NA*	ND	75.2	412	ND	ND	ND	ND	NA*	11.2	NA*	ND
I IVIVV-07	4/30/2018	ug/L	Dissolved	NA*	ND	66.3	431	ND	ND	ND	ND	NA*	11.5	NA*	ND
DUP-1	4/30/2010	ug/L	Total	NA*	ND	73.0	406	ND	ND	ND	ND	NA*	10.8	NA*	ND
ם פוריו			Dissolved	NA*	ND	68.4	437	ND	ND	ND	ND	NA*	12.4	NA*	ND
TMW-71	4/26/2018	ug/L	Total	NA*	ND	230	ND	ND	ND	ND	ND	NA*	ND	NA*	ND
1 1VIVV-/ I	4/20/2010	ug/L	Dissolved	NA*	12.7	284	ND	ND	ND	ND	ND	NA*	14.9	NA*	ND
TMW-72	4/26/2018	ug/l	Total	NA*	28.4	602	304	ND	63.8	41.5	57.0	NA*	16.1	NA*	ND
I IVIVV-1∠	4/20/2018	ug/L	Dissolved	NA*	ND	139	323	ND	ND	ND	ND	NA*	11.8	NA*	ND
TN 4\\ A / \ 7 4	E/1/0040	116/1	Total	NA*	124	3380	121	24.3	244	195	226	NA*	18.7	NA*	ND
TMW-74	5/1/2018	ug/L	Dissolved	NA*	12.9	281	ND	ND	ND	ND	ND	NA*	15.2	NA*	ND
SW-1	5/2/2018	ug/L	Total	NA*	11.4	117	1920	ND	ND	ND	ND	NA*	133	NA*	25.2
SW-2	5/4/2018	ug/L	Total	NA*	ND	31.7	ND	ND	ND	ND	ND	NA*	ND	NA*	ND

Note:

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

Samples were analyzed using EPA SW-846 Methods 6010B, 7196, and 7470.

Constituents not detected above laboratory detection limits are not listed in the table.

ND = Not Detected

NA = Not Analyzed for that constituent

Bold = Concentrations above their respective Remediation Closure Guide (RCG) Tap Screening Levels (updated 2018).

Table 2C Groundwater Analytical Summary (Fluoride)

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Fluoride
	Groundwater Tap Resi	dential	800
B-3	2/9/2018	mg/L	0.23
B-6	2/9/2018	mg/L	0.20
B-7	2/12/2018	mg/L	0.58
B-9	2/12/2018	mg/L	NA*
B-11	2/12/2018	mg/L	NA*
B-13	2/12/2018	mg/L	NA*
B-14	2/13/2018	mg/L	NA*
B-15	2/13/2018	mg/L	NA*
B-16	2/13/2018	mg/L	NA*
B-19	2/13/2018	mg/L	NA*
B-21	2/14/2018	mg/L	NA*
B-23	2/14/2018	mg/L	NA*
B-24	2/15/2018	mg/L	0.46
B-26	2/15/2018	mg/L	0.26
B-27	2/20/2018	mg/L	0.22
B-34	2/20/2018	mg/L	0.68
B-36	2/15/2018	mg/L	1.1
B-38	2/19/2018	mg/L	1.4
DUP	2/19/2010	mg/L	1.4
TMW-40	4/25/2018	mg/L	NA*
TMW-43	4/25/2018	mg/L	NA*
TMW-45	4/25/2018	mg/L	NA*
TMW-47	4/25/2018	mg/L	NA*
TMW-50	4/25/2018	mg/L	NA*
TMW-52	4/24/2018	mg/L	NA*
TMW-55	4/26/2018	mg/L	NA*
TMW-56	4/26/2018	mg/L	NA*

Table 2C Groundwater Analytical Summary (Fluoride)

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Fluoride
	Groundwater Tap Resi	dential	800
TMW-57	4/24/2018	mg/L	NA*
TMW-59	4/26/2018	mg/L	NA*
TMW-63	4/27/2018	mg/L	NA*
TMW-66	4/27/2018	mg/L	NA*
TMW-67	4/30/2018	ma/l	NA*
DUP-1	4/30/2018	mg/L	NA*
TMW-71	4/26/2018	mg/L	NA*
TMW-72	4/26/2018	mg/L	NA*
TMW-74	5/1/2018	mg/L	NA*
SW-1	5/2/2018	mg/L	NA*
SW-2	5/4/2018	mg/L	NA*

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018) NA = Not Analyzed

Samples were analyzed using US EPA SW-846 Method 4500FC

Table 2D

Groundwater Analytical Summary (Radium)
Phase II Limited Subsurface Investigation
Former AEP Tanner's Creek Generating Station
800 AEP Drive, Lawrenceburg, Indiana
ATC Project No. 170EM00522

Sample ID	Collected Date	Units	Radium-226	Radium-228	Total Radium
B-3	2/9/2018	pCi/L	0.267 ± 0.406 (0.699) C:NA T:90%	0.905 ± 0.428 (0.736) C:86% T:80%	1.17 ± 0.834 (1.435)
B-6	2/9/2018	pCi/L	0.347 ± 0.378 (0.595) C:NA T:95%	0.321 ± 0.329 (0.682) C:88% T:85%	0.668 ± 0.707 (1.277)
B-7	2/12/2018	pCi/L	0.529 ± 0.329 (0.324) C:NA T:103%	0.734 ± 0.355 (0.595) C:85% T:88%	1.26 ± 0.684 (0.919)
B-9	2/12/2018	pCi/L	NA*	NA*	NA*
B-11	2/12/2018	pCi/L	NA*	NA*	NA*
B-13	2/12/2018	pCi/L	NA*	NA*	NA*
B-14	2/13/2018	pCi/L	NA*	NA*	NA*
B-15	2/13/2018	pCi/L	NA*	NA*	NA*
B-16	2/13/2018	pCi/L	NA*	NA*	NA*
B-19	2/13/2018	pCi/L	NA*	NA*	NA*
B-21	2/14/2018	pCi/L	NA*	NA*	NA*
B-23	2/14/2018	pCi/L	NA*	NA*	NA*
B-24	2/15/2018	pCi/L	0.120 ± 0.409 (0.789) C:NA T:86%	0.529 ± 0.441 (0.890) C:73% T:81%	$0.649 \pm 0.850 (1.679)$
B-26	2/15/2018	pCi/L	0.557 ± 0.560 (0.873) C:NA T:87%	0.638 ± 0.461 (0.895) C:71% T:68%	1.195 ± 1.021 (1.768)
B-27	2/20/2018	pCi/L	0.337 ± 0.398 (0.626) C:NA T:102%	0.604 ± 0.308 (0.514) C:80% T:87%	0.941 ± 0.706 (1.14)
B-34	2/20/2018	pCi/L	0.716 ± 0.569 (0.739) C:NA T:94%	0.550 ± 0.337 (0.621) C:78% T:87%	1.266 ± 0.906 (1.360)
B-36	2/15/2018	pCi/L	-0.063± 0.411 (0.890) C:NA T:80%	0.726 ± 0.416 (0.762) C:72% T:82%	0.663 ± 0.827 (1.652)
B-38	2/19/2018	pCi/L	0.296 ± 0.412 (0.688) C:NA T:97%	0.332 ± 0.318 (0.648) C:77% T:81%	$0.628 \pm 0.730 (1.336)$
DUP	2/19/2010	pC//L	0.540 ± 0.562 (0.836) C:NA T:92%	0.664 ± 0.370 (0.665) C:81% T:80%	1.204 ± 0.932 (1.501)
TMW-40	4/25/2018	pCi/L	NA*	NA*	NA*
TMW-43	4/25/2018	pCi/L	NA*	NA*	NA*
TMW-45	4/25/2018	pCi/L	NA*	NA*	NA*
TMW-47	4/25/2018	pCi/L	NA*	NA*	NA*
TMW-50	4/25/2018	pCi/L	NA*	NA*	NA*
TMW-52	4/24/2018	pCi/L	NA*	NA*	NA*
TMW-55	4/26/2018	pCi/L	NA*	NA*	NA*
TMW-56	4/26/2018	pCi/L	NA*	NA*	NA*
TMW-57	4/24/2018	pCi/L	NA*	NA*	NA*
TMW-59	4/26/2018	pCi/L	NA*	NA*	NA*
TMW-63	4/27/2018	pCi/L	NA*	NA*	NA*
TMW-66	4/27/2018	pCi/L	NA*	NA*	NA*
TMW-67	4/30/2018	pCi/L	NA*	NA*	NA*
DUP-1		POI/L	NA*	NA*	NA*
TMW-71	4/26/2018	pCi/L	NA*	NA*	NA*
TMW-72	4/26/2018	pCi/L	NA*	NA*	NA*
TMW-74	5/1/2018	pCi/L	NA*	NA*	NA*
SW-1	5/2/2018	pCi/L	NA*	NA*	NA*
SW-2	5/4/2018	pCi/L	NA*	NA*	NA*

Results are presented in picocuries per liter (pCi/L).

NA = Not Analyzed

Samples were analyzed using US EPA SW-846 Method 901.1

Table 2E

Lawrenceburg / Aurora Wellfield Raw Water Analytical Data
Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana ATC Project No. 170EM00522

Well ID	Collected Date	Units	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chloride	Chromium	Cobalt	Fluoride	Lead	Lithium	Molybdenum	Selenium	Sulfate	Thallium	Mercury
Ground	lwater Tap Residen	tial	6	10	2000	4	4000	5	NE	NE	100	6	800	15	40	100	50	NE	2	2
LMS Well	3/13/2018	ug/L	<3.0	<3.0	30	<0.5	40	<0.5	72400	24000	<10	<10	307	<2.0	<10	<10	<3.0	39000	<1.0	<0.2
Aurora Well	3/13/2018	ug/L	<3.0	<3.0	44	<0.5	1000	<0.5	100000	33000	<10	<10	247	<2.0	<10	<10	<3.0	110000	<1.0	<0.2

Note:

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018)

Samples were analyzed using EPA Methods 300.0 Rev 2.1, SM 4500-F C-97, SM 2540C-97, 200.7 Rev. 4.4, 200.8 Rev. 5.4, and 245.1 Rev. 3.0.

Bold = Concentrations above their respective Remediation Closure Guide (RCG) Tap Screening Levels (updated 2018).

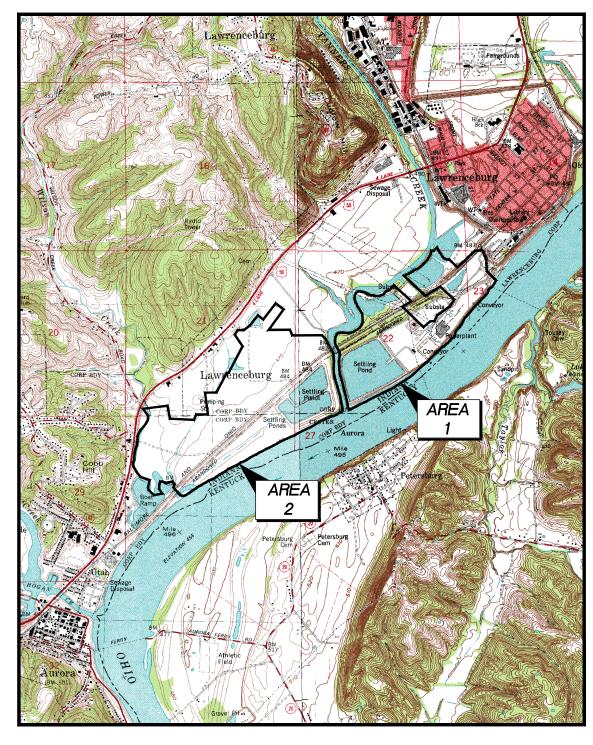
Table 2F Groundwater Analytical Summary (6/2018 Sampling Event)

Phase II Limited Subsurface Investigation Former AEP Tanner's Creek Generating Station 800 AEP Drive, Lawrenceburg, Indiana

ATC Project No. 170EM00522

	Arsenic	Barium	Barium, Dissolved	Cadmium	Chromium	Lead	Manganese	Manganese, Dissolved		Nickel	Nickel, Dissolved	Selenium	Zinc	Zinc, Dissolved	. Acenaphthene	Anthracene	Fluorene	Fluoride
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L
IDEM Screening Groundwater Tap Residential	10	2000	2000	5	100	15	430	430	100	390	390	50	6000	6000	530	1800	290	800
B-77	ND	150	139	ND	ND	ND	3210	3950	12.3	16.8	14.8	ND	120	101	ND	ND	ND	190
B-79	ND	64.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	137	ND	ND	ND	ND	ND	ND
B-80	62.7	1550	ND	3.0	162	178	ND	ND	ND	ND	ND	287	ND	ND	ND	ND	ND	ND
B-81	ND	103	ND	ND	ND	10.1	ND	ND	ND	ND	ND	40.3	ND	ND	1.1	0.49	1.5	ND
B-83	ND	107	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-85	ND	317	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-87	ND	124	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	שויו	121	110					–										
B-88	ND			ND		37.0								ND				ND

Notes:

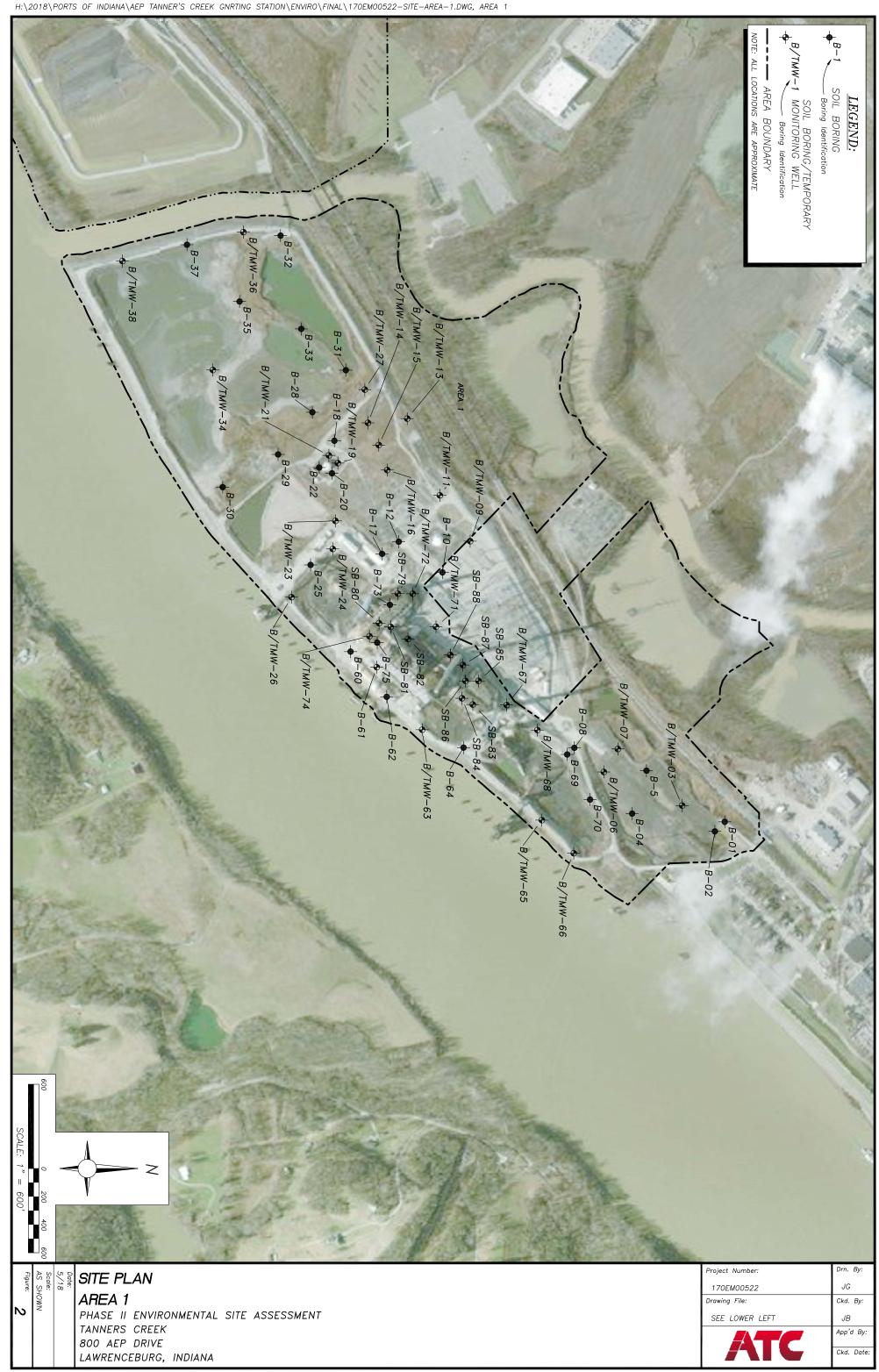

IDEM RCG = Indiana Department of Environmental Management Remediation Closure Guide (IDEM RCG) (Screening Levels updated March 2018) Samples were analyzed using EPA SW-846 Methods 6010B, and 7470.

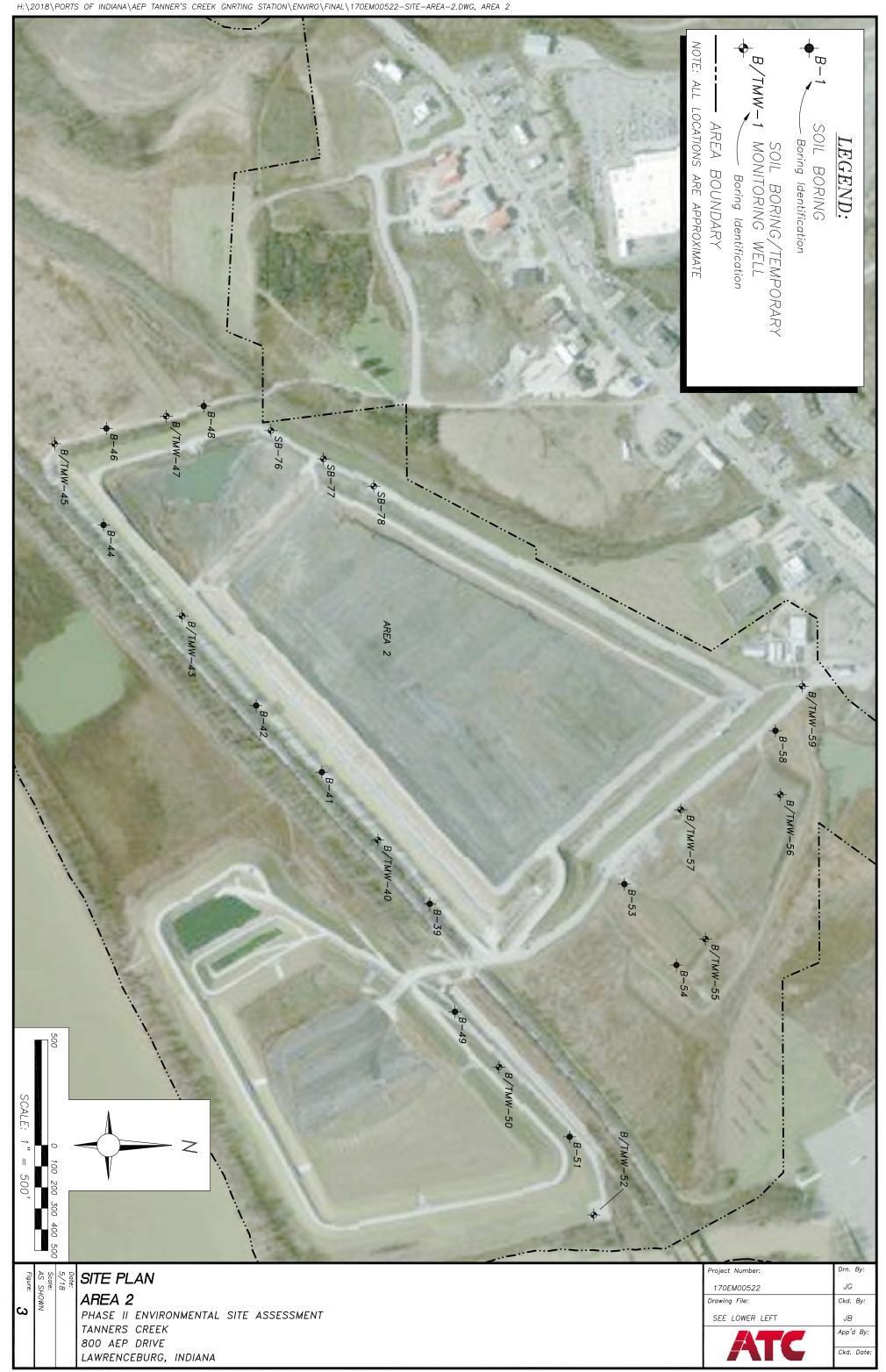
Constituents not detected above laboratory detection limits are not listed in the table.

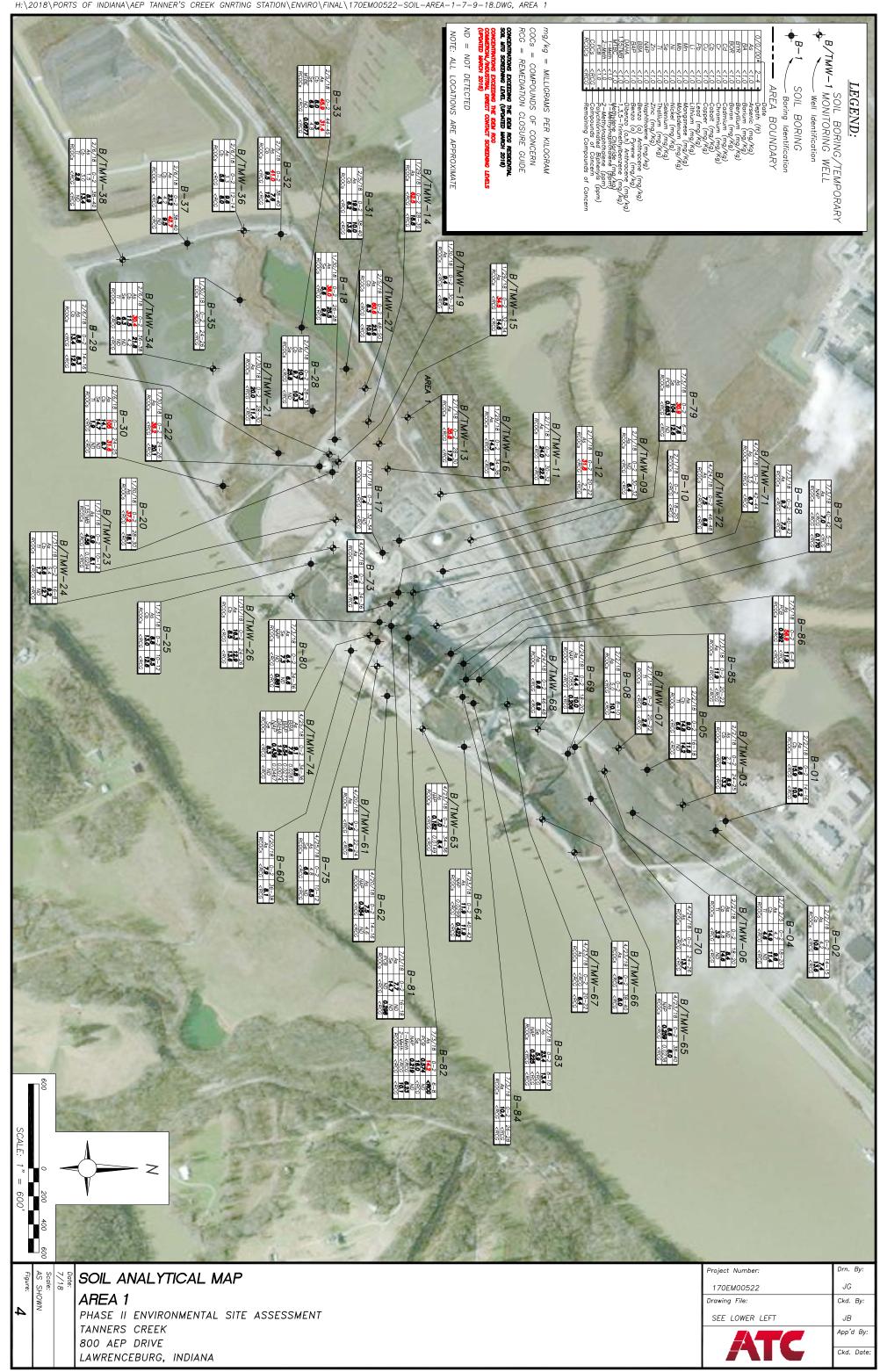
ND = Not Detected

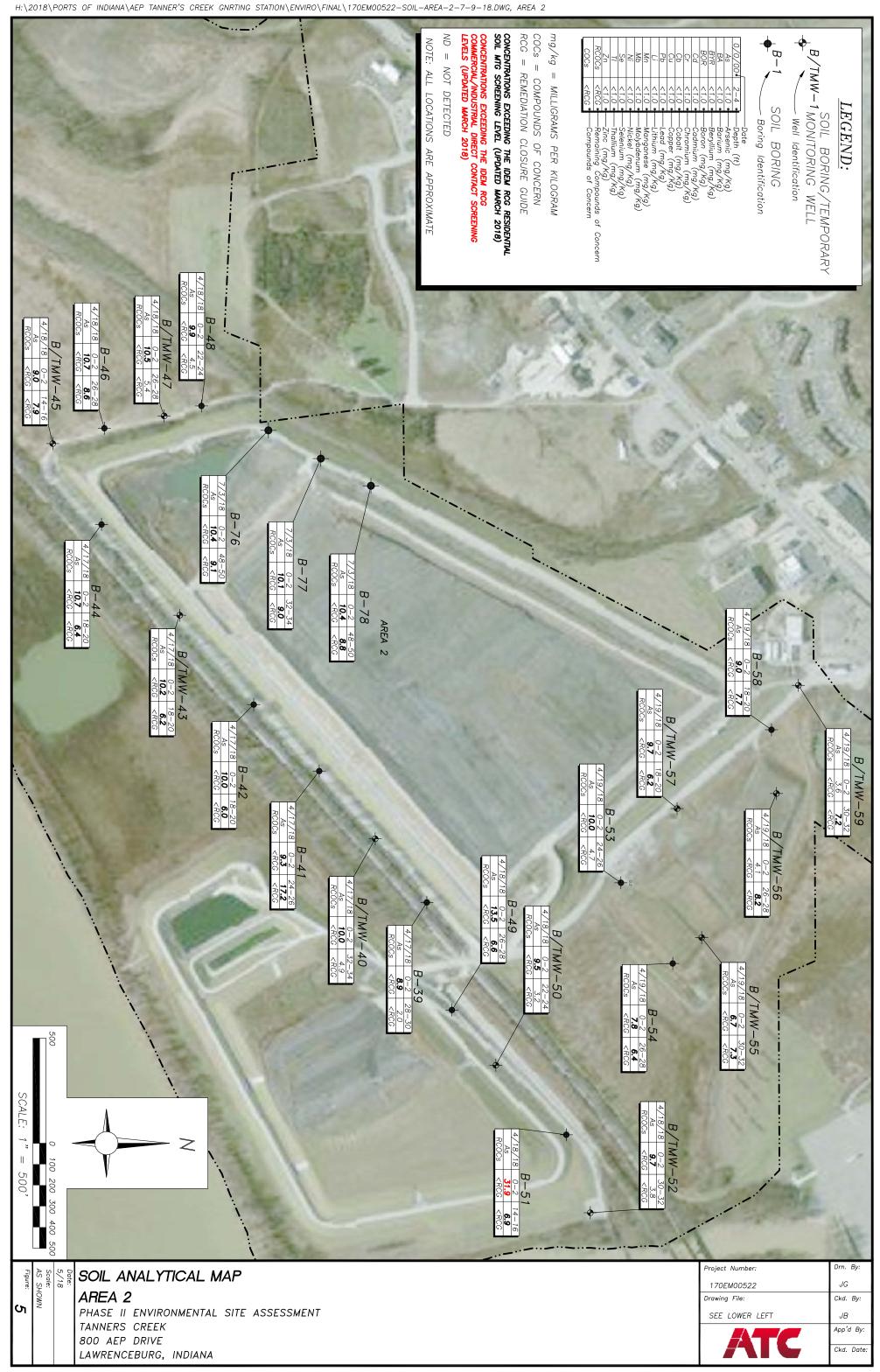
Bold = Concentrations above their respective Remediation Closure Guide (RCG) Tap Screening Levels (updated 2018).

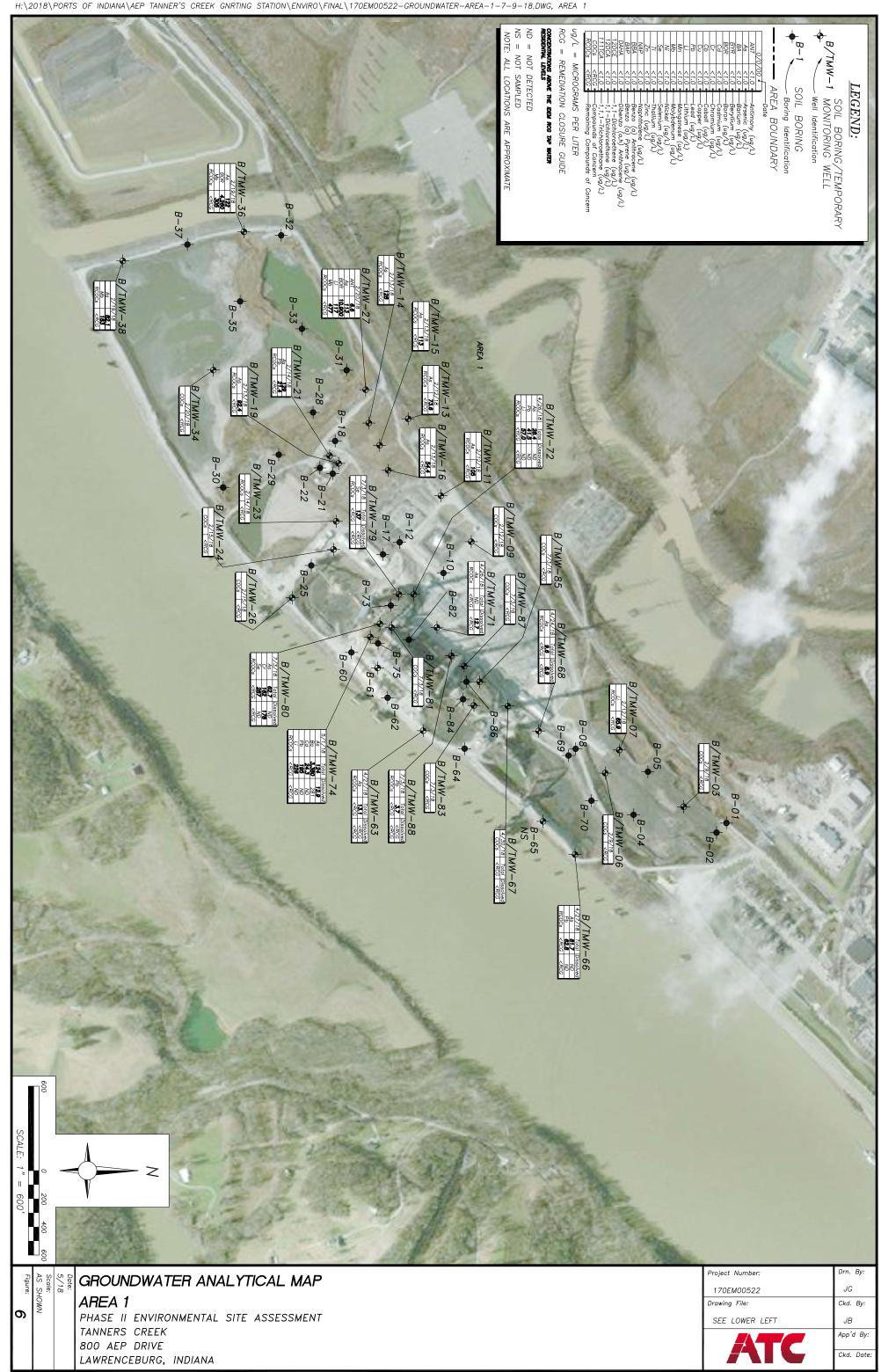
Figures		

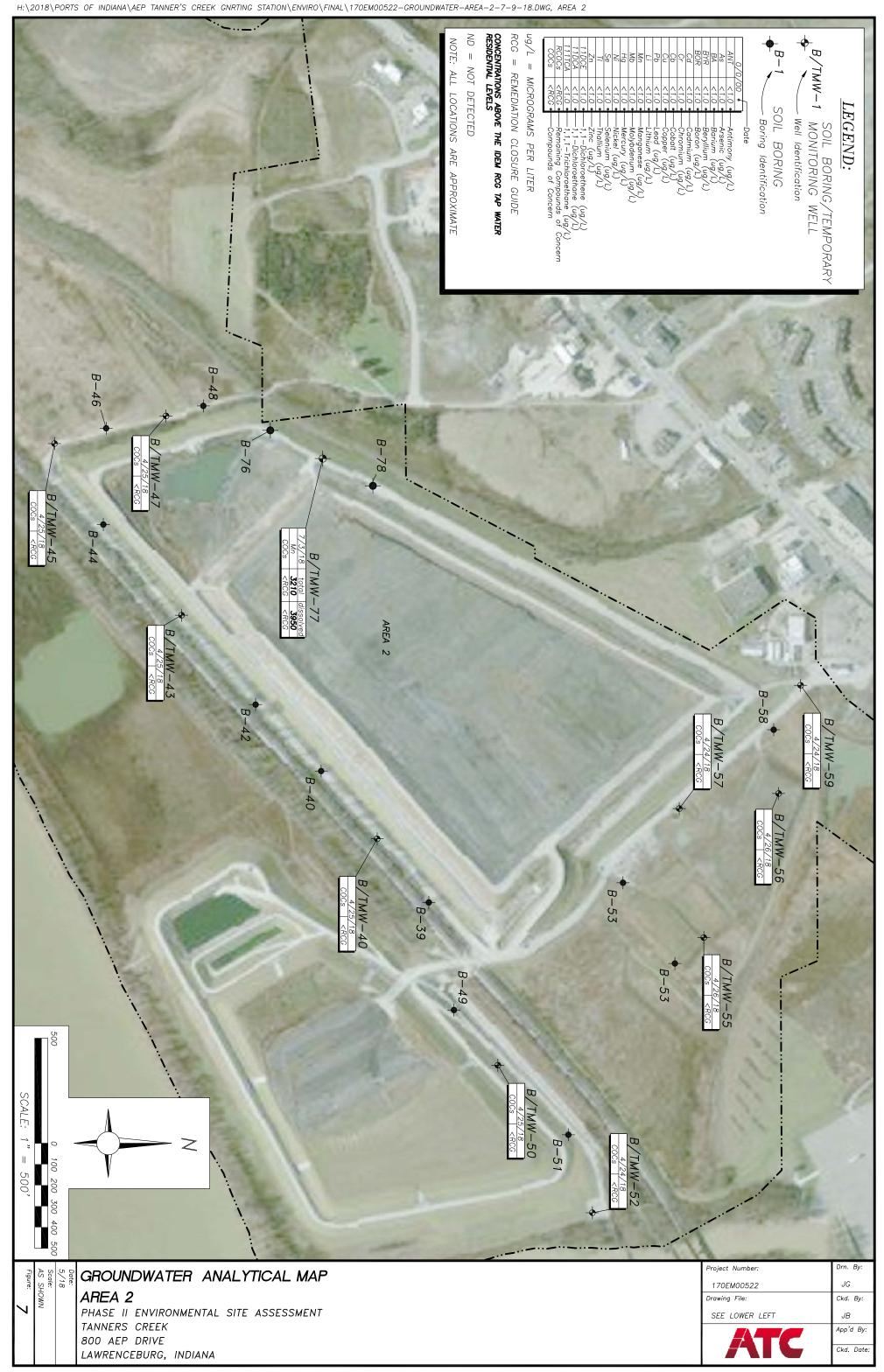


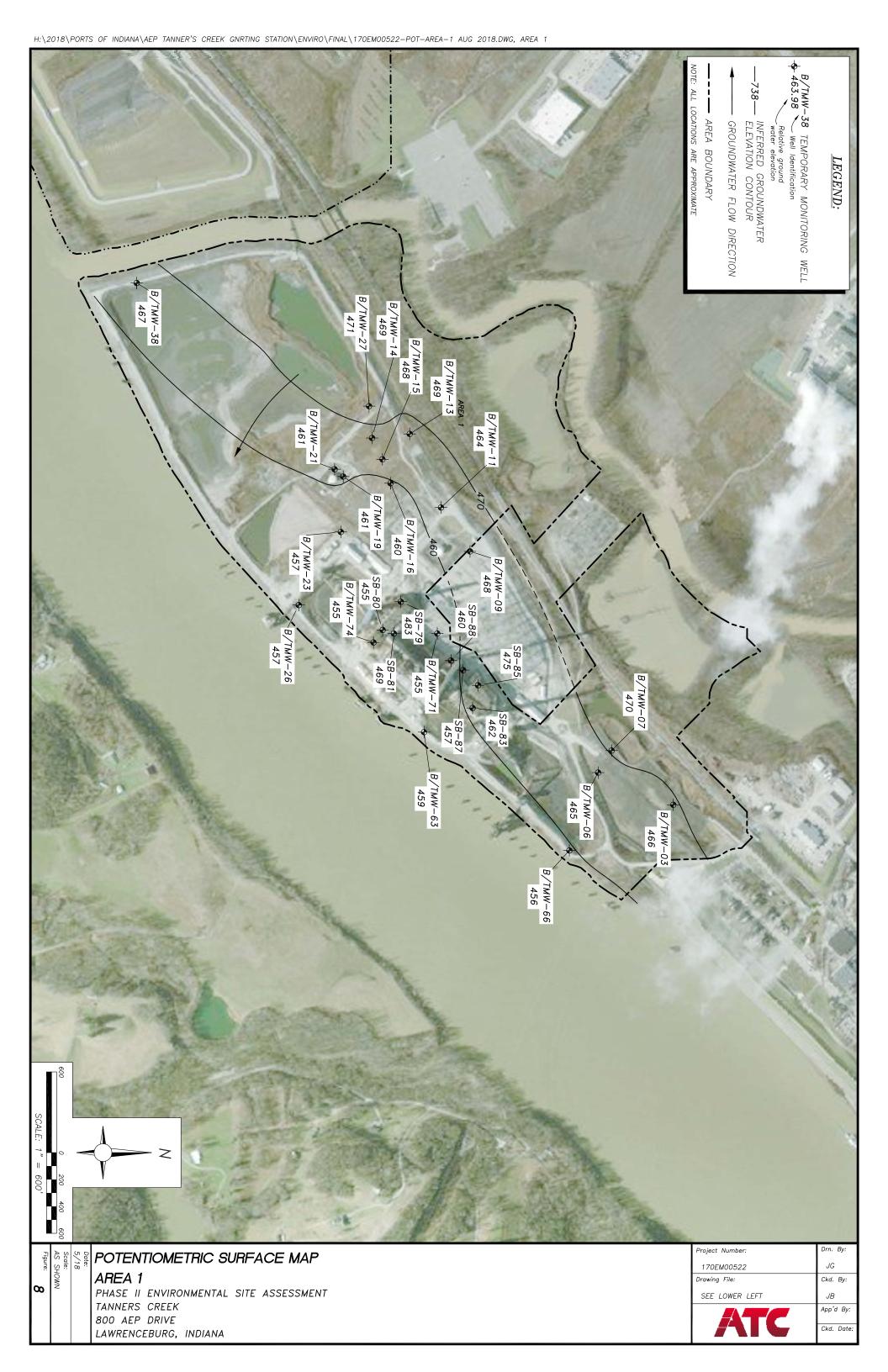


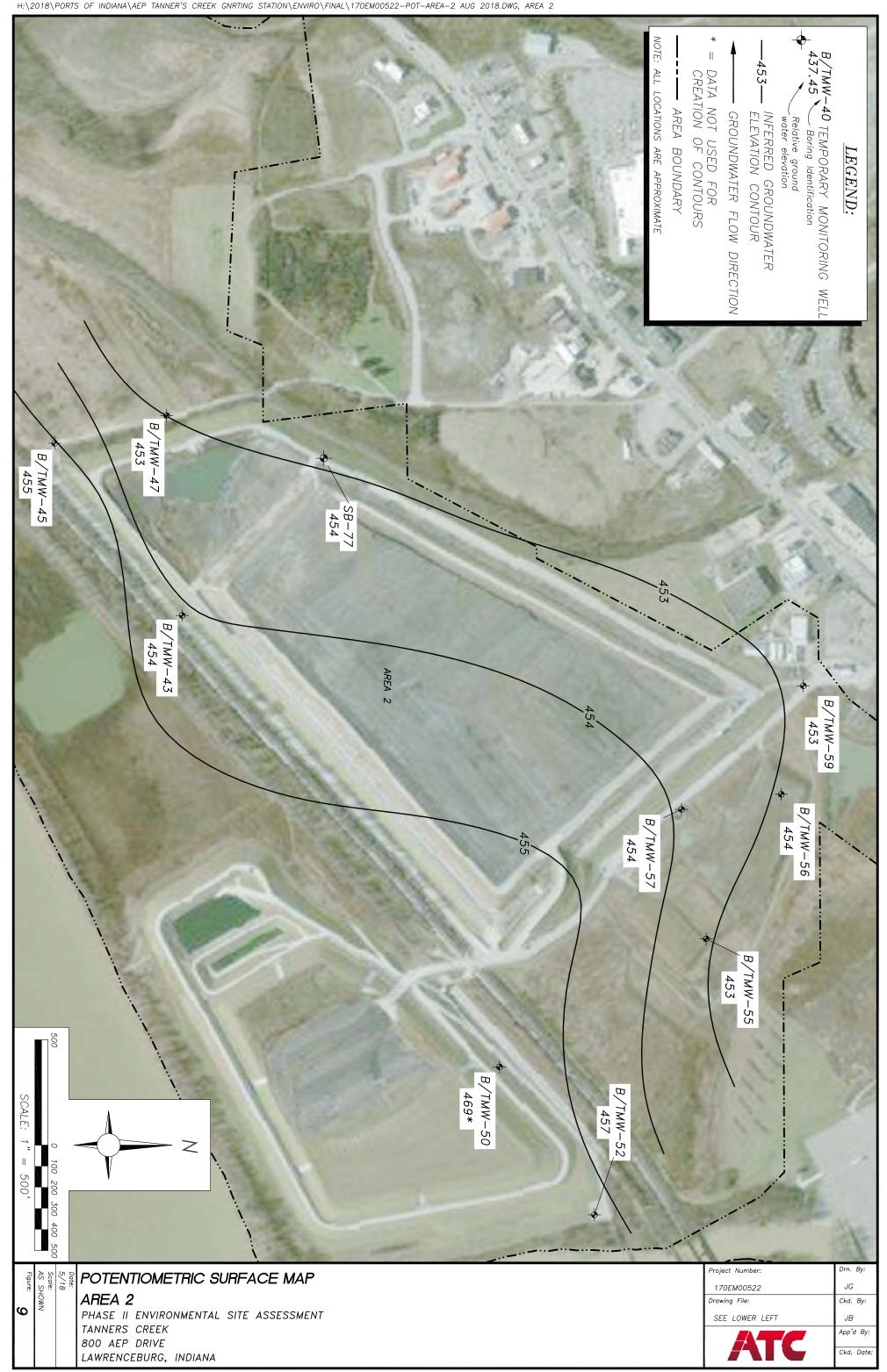

VICINITY MAP


PHASE II ENVIRONMENTAL SITE ASSESSMENT 800 AEP DRIVE LAWRENCEBURG, INDIANA


Project Number:	Drn. By: JG	
170EM00522	JG	
Drawing File:	Ckd. By:	
SEE LOWER LEF	JC	
Date:	Scale:	Арр'd Ву:
5/18	1"=3,000'	
		Figure:
		1







Appendix A – Soil Boring I	Logs	

7988 Centerpoint Drive, Suite 100 Indianapolis, IN 46256 (317) 849-4990 Fax (317) 849-4278

CLIENT	ENTPorts of Indiana					BORING #	BORING #			
	ROJECT NAME Former AEP Tanner's Creek Generating Station				170EM00522					
PROJECT LOCATION	OJECT LOCATION 800 AEP Drive									
	Lawrenceb	urg, Indiana 470)25							
DRILLING and SAMPLING INFORMATION						TEST	TEST DATA			
Date Started	2/2/18 Boring Method Geoprobe									
Date Completed 2/2/18 Sampler OD Drill Foreman Z. Vaughan Inspector		<u> </u>								
		-					oors			
	_			- Vay		э Уар				
								izable	Sa	mpling Notes
			<u> </u>	<u> </u>		(£)	ıter	ioioi		
SOIL CLASSIFICATION		<u> </u>		<u>e</u>	very	ndwa	Phot			
	SURFACE ELEVAT	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
COAL ASH			1.0 _ 1				0.2	A hand-auger was u	sed to advance the first five	
Brown, dry, CL	.AY (CL)			-	2	4.0		0.1	feet of the boring to reduce the possibility of damaging unidentified underground utilities.	
				-] ~	4.0		0.1		
				-	3	-		0.0		
				5 -						
				4	4.0		25.6			
			-	5	-		120			
				-	Ĭ				502	
				10 -	6	4.0		502		
				-						
				-	7			The soil samples collected from th		
				15 —	8	4.0		836	14-16 ft intervals were submitted for laboratory analysis. The duplicate 2 soil sample was collecte	
									from the 14-16 ft interval.	
- silty clay below 17 ft			-	9			68.6			
			-	10	4.0		34.5			
				-	"	4.0		01.0		
				20 -	11	-		17.6		
			22.0	-		-	•			
Brown, wet, SA			23.0	_	12	4.0		10.2		
Blown, wet, co	arse GRAVEL and S	DAIND (GP)	25.0	-	13			7.2		
Bottom of Bori	ng at 25 ft		25.0	25 —		1.0				
									Drillers License No.	2581
			 Do	oth to (- Group	dwat	or Or		Dilliois Licelise No.	HSA Hallow Stam Augure

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Noted on Drilling Tools <u>22.0</u> ft. □ At Completion (open hole) ____ ft.

▼ After ____ hours ___ ☑ Cave Depth **--**_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

SP - Submersible Pump

Page 1 of

LIE	NT	Ports of Inc	diana							BORING #	B-02
RC	JECT NAME	Former AE	P Tanner's Cree	k Gen	eratir	ng Si	atio	n		JOB #	170EM00522
RC	JECT LOCATIO	N 800 AEP D	rive								
		Lawrenceb	urg, Indiana 470	25							
		DRILLING and SA	AMPLING INFORMA	TION		_				TEST	DATA
D	ate Started	2/2/18	Boring Method	Geop	robe						
	ate Completed	-	Sampler OD	_		in.					
D	rill Foreman	Z. Vaughan	Inspector	J. Bu	ickel				oors		
									e Va		
									izabl	San	npling Notes
				Ι	Ī		(ft)	ater	toion		
		SOIL CLASSIFICA	TION	<u>۾</u> ج		ole	very	ndwa	Phot		
		SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
	Black, dry, CC	OAL ASH			-	1			1.6	A hand-auger was us	ed to advance the first five educe the possibility of
					-					damaging unidentified	d underground utilities.
	200 244 247 247 247				-	2	4.0		1.1		
					_				1.1		
					-						
	644 20 344 344 344 344 344 344 344 344				-	3			0.8		
	- wet below 5.0	0 ft			5 -			•			
					-	4	4.0		0.3		
				7.0	-				0.5		
	Brown, dry, Cl	LAY (GL)			_					The soil samples coll	ected from the 0-2 ft and
1					-	5			0.9	analysis. The MS/MS	e submitted for laboratory SD soil sample was collected
					-					from the 0-2 ft interva	ıl.
					10 —	6	4.0		1.2		
-10					-						
					-						
1	- gray/brown b	elow 12 ft			_	7			1260		
					-						
					-	8	3.0		2450		
	Bottom of Bori	ing at 15 ft		15.0	15 —						
	Bottom of Bon	ing at 15 it									
										Drillers License No. 2	0501
										Difficia License (40. 2	.001

TPV - Total Photo-Ionization Vapors

TFV - Total Photo-ionization Vapors
TFV - Total Flame-lonization Vapors
PPM- Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

Depth to Groundwater

5.0 ft. Noted on Drilling Tools

At Completion (open hole) ____ ft. --_ ft.

▼ After ____ hours ___ ☑ Cave Depth **--**_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger BLR - Bailer

BP - Bladder Pump
PP - Peristaltic Pump
SP - Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-03
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME Former AEP Tanner's Cree	k Gen	eratir	ıg St	atio	n		JOB# 170EM00522
PROJECT LOCATION 800 AEP Drive							
Lawrenceburg, Indiana 470)25						
DRILLING and SAMPLING INFORMA	TION		Г				TEST DATA
Date Started <u>2/2/18</u> Boring Method _	Geop	robe	.				
Date Completed <u>2/2/18</u> Sampler OD _		2.0	in.			ω	
Drill Foreman <u>Z. Vaughan</u> Inspector	J. Bu	ckel	-			apor	
						ple V	Sampling Notes
					L	oniza	Samping Hotes
SOIL CLASSIFICATION				ıy (ft)	wate	hotoic	
SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
COAL ASH		_	1			0.1	A hand-auger was used to advance the first five
Controlled		-				0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
ACCOUNTS OF THE PROPERTY OF TH		-	2	4.0		0.0	
- Francisco			3			0.0	
- Programme - Prog		5 -					
Processor Processor Processor Processor Processor Processor Processor		_	4	4.0		1.0	
Contraction Contr		-	5			0.0	
Distribution Di		10 —					
- Execution - Control of the Control		-	6	4.0	ē	0.2	
- wet below 11 ft		_	7			0.0	
Principles Principles Principles Principles Principles Principles Principles		-					The soil samples collected from the 0-2 ft and 24-25 ft intervals were submitted for laboratory
- Control - Cont		15 —	8	4.0		0.0	analysis. The soil sample from the 0-2 ft interval was collected on 1/17/18 and the soil sample from
- NORMONE STANDARD CONTROL OF THE STANDARD CONTROL OF		- -	9			0.1	24-25 ft interval was collected 2/2/18.
- STATESTAND - STA		_					
September 1		=	10	4.0		0.3	
- GARACTER		20 -	11			0.1	
= contraction -	22.0	_				• • • • • • • • • • • • • • • • • • • •	
Brown, dry, CLAY (CL)		_	12	4.0		0.2	
		=	13			0.3	
Bottom of Boring at 25 ft	25.0	25 —	13	1.0		5.5	
							Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools ______ ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours __

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump - Submersible Pump

22

<u>- </u>	er AEP Tanner's Cree	k Gen	oratir	na S	tatio	n		JOB# 170EM00522
	EP Drive	K GCI	ici atii	ig S	latio			JOB#
	enceburg, Indiana 470)25						
DRILLING	and SAMPLING INFORMA	TION						TEST DATA
Date Started 2/2/18	Boring Method		robe					
Date Completed 2/2/18		•	2.0	_ in.				
Drill Foreman Z. Vaugh	an Inspector	J. Bu	ickel	_			apors	
							ole Va	Sampling Notes
						L	onizal	Camping Notes
SOIL CLASS	SIFICATION			0	ery (ft)	dwate	hotoic	
SURFACE E	ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
Black, dry, COAL ASH		S O		ω Z 1	ш.	9	0.0	A hand-auger was used to advance the first five
- Northead Control of			-					feet of the boring to reduce the possibility of damaging unidentified underground utilities.
- Control of the Cont			_	2	4.0		0.1	
			-					
CONTRACTOR			5 -	3			0.0	
- NAME OF THE PROPERTY OF THE			-				0.0	
- Steinholmen - Stei			-	4	4.0		0.2	
- CANADAN - CANA			-	5			0.5	
- transfer of the second of th			-					
- CONTROL CONT			10 —	6	4.0		0.7	The soil samples collected from the 0-2 ft and
- Constitution of the cons			-			•		18-20 ft intervals were submitted for laboratory analysis. The soil sample from the 0-2 ft interval was collected on 2/2/18 and the soil sample from
- wet below 12 ft			_	7		-	0.6	18-20 ft interval was collected 2/5/18.
- Control of the Cont			-		4.0		0.0	
- Constitution of the Cons			15 —	8	4.0		0.9	
CONTRACTOR			-	9			0.3	
— Excellent		18.0	_	-				
Brown, dry, soft, CLAY (CL)		-	10	4.0		1.2	
		20.0	20 —					
Bottom of Boring at 20 ft								
								Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Photo-ionization Vapors
TFV - Total Flame-lonization Vapors
PPM- Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 12.0 ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP

- Bladder Pump - Peristaltic Pump PP

CLIENT	Ports of Inc	diana			BORING #	B-05
PROJECT NAME	Former AE	P Tanner's Cre	ek Generating St	ation	JOB #	170EM00522
PROJECT LOCATION	800 AEP D	rive	_			
	Lawrenceb	ourg, Indiana 47	025			
	DRILLING and SA	AMPLING INFORM	ATION		TEST	DATA
Data Started	2/2/18	Boring Mothod	Geonrobe			

Boring Method **Geoprobe** Date Started Sampler OD Date Completed 2/2/18 Total Photoionizable Vapors Drill Foreman Z. Vaughan J. Buckel Inspector _____ Sampling Notes Recovery (ft) Groundwater SOIL CLASSIFICATION Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION COAL ASH 0.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 2 4.0 0.0 3 0.0 5 4.0 0.1 0.0 5 10 6 4.0 The soil samples collected from the 0-2 ft and 0.2 16-18 ft intervals were submitted for laboratory - wet below 11 ft analysis. 7 0.1 13.0 Brown, dry, CLAY (CL) 4.0 20.6 8 15 - gray/brown below 15 ft 1321 9 10 4.0 30.6 20.0 20 -Bottom of Boring at 20 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 11.0 ft.

At Completion (open hole) -- ft.

--_ ft. ▼ After ____ hours ___ ☑ Cave Depth -- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

Drillers License No. 2581

- Bladder Pump BP

PΡ - Peristaltic Pump

PROJECT NAME Former AEP Tanner's Creek Generating Station PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 BORING # B-06 170EM0	0522
Lawrenceburg, Indiana 47025	
•	
DRILLING and SAMPLING INFORMATION	
Date Started Boring Method Boring Method	
Date Completed 2/2/18 Sampler OD 2.0 in.	
Nap (
Sampling Notes	
Drill Foreman Z. Vaughan Inspector J. Buckel Solic Classification Surface Elevation Surface Elevation Surface Elevation Surface State of the state	
Stratum Stratum Societ No. Total Photoio (ppm)	
Size at the state of the state	
Black, dry, COAL ASH - 1 0.8 A hand-auger was used to advance	the first five
feet of the boring to reduce the poss damaging unidentified underground	ibility of
	utilities.
- TANDANA - TAND	
10 - 6 4.0 0.4 The soil samples collected from the	0 2 ft and
- 18-20 ft intervals were submitted for	laboratory
- wet below 12 ft analysis.	
- wet below 12 ft	
Brown, dry, soft, CLAY (CL)	

TPV - Total Photo-Ionization Vapors

Bottom of Boring at 20 ft

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

10 4.0

20.0

20

8.0

Noted on Drilling Tools <u>12.0</u> ft.

At Completion (open hole) ____ ft. --_ ft.

--_ ft.

▼ After ____ hours

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 2581

BP - Bladder Pump

PΡ - Peristaltic Pump

CLIENT	Ports of Inc	diana							BORING #	B-07
PROJECT NAME	Former AE	P Tanner's Cree	ek Gen	eratir	ng S	tatio	n			170EM00522
PROJECT LOCATION	N <u>800 AEP Dr</u>	ive								
	Lawrenceb	<u>urg, Indiana 47</u>	025							
	DRILLING and SA	MPLING INFORM	ATION						TEST	DATA
Date Started	2/1/18	Boring Method _	Geop	robe						
Date Completed		Sampler OD	_	2.0						
Drill Foreman	Z. Vaughan	Inspector	J. Bu	ckel	_			oors		
								e Va		
								izabl	San	npling Notes
			T			Œ	ater	toion		
	SOIL CLASSIFICAT	TION	ا ۾ د	- n	ole .	very	ndws	Pho		
	SURFACE ELEVAT	ION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
COAL ASH				-	1			0.4	A hand-auger was us	ed to advance the first five
				-	2	4.0		0.7	teet of the boring to red	educe the possibility of dunderground utilities.
- Control of the Cont				-		4.0		0.7		
				5 -	3			0.2		
-				-	4	4.0		0.2		
				-						
				-	5			1.1		
				10 -	6	4.0		0.2		
				_		-		0.2		
- Control Cont				-	7			0.2		
				15 -	8	4.0	◉	1.3		
- wet below 15	π			-	9			25.8	20-22 ft intervals wer	ected from the 0-2 ft and e submitted for laboratory
				_					analysis.	
CONTROL CONTRO			20.0	-	10	4.0		7.7		
Brown, dry, CL	 _AY (CL)		_ 20.0	20 -	11	-		29.6		
				_	12	4.0		3.9		
				-	12	4.0		0.0		
				25 -	13			0.4		
				-	14	4.0		0.2		
				-						
			30.0		15	2.0		0.0		
Bottom of Bori	ng at 30 ft		30.0	30 -		2.0				
									Drillers License No. 2	2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools ______ ft.

At Completion (open hole) ____ ft. ▼ After ____ hours ____ ft.

☑ Cave Depth **--**_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #_	B-08
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA 2/2/18 Boring Method Geoprobe Date Started Date Completed 2/2/18 Sampler OD Total Photoionizable Vapors Drill Foreman Z. Vaughan Inspector ____ J. Buckel Sampling Notes Recovery (ft) Groundwater SOIL CLASSIFICATION Stratum Depth Sample No. Depth Scale (mdd) SURFACE ELEVATION **TOPSOIL** A hand-auger was used to advance the first five 0.1 0.7 feet of the boring to reduce the possibility of Brown and light gray, dry, CLAY (CL) damaging unidentified underground utilities. 2 4.0 - brown/gray below 4.0 ft 3 14.3 5 4.0 15.6 The soil samples collected from the 0-2 ft and 8-10 ft intervals were submitted for laboratory analysis. 5 1421 The duplicate 3 soil sample was collected from the 8-10 ft interval. 10 4.0 10.6 7 0.9 13.0 Brown, wet, coarse, SAND (SP) with Ititle gravel 3.0 1.4 15.0 15 Bottom of Boring at 15 ft Drillers License No. 2581

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater Noted on Drilling Tools 13.0 ft. At Completion (open hole) -- ft. ▼ After -- hours -- ft.

☑ Cave Depth -- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #_	B-09
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
•			

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 2/1/18 Date Started Well Material Date Completed 2/1/18 **1.0** in. Well Diameter Total Photoionizable Vapors Z. Vaughan Drill Foreman Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 1.7 1.0 Black, dry, COAL ASH A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Gray, dry, SAND (SP) with some gravel 1.2 damaging unidentified underground utilities. 2 4.0 1.4 3 1.2 4.0 1.5 5 10.0 10 0.9 Gray/brown, dry, SILTY CLAY (CL) 6 4.0 1.1 7 1.3 8 4.0 15 0.9 9 The soil samples collected from the 0-2 ft and 1.9 4.0 10 30-32 ft intervals were submitted for laboratory 20 analysis. 3.4 11 0.9 12 4.0 - wet with some sand between 23-24 ft 0.1 13 11.7 - brown clay below 26 ft 14 4.0 24.9 15 30 379 16 4.0 32.0 3.7 Brown, wet, SAND and GRAVEL (GP) 17 3.0 1.7 35.0 18 35 Bottom of Borng at 35 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

● Noted on Drilling Tools 23.0 ft.

▼ At Completion (open hole) -- ft.

▼ After ____ hours ____ ft. ☑ Cave Depth ____ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-10
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA Date Started 2/1/18 Boring Method Geoprobe Date Completed 2/1/18 Sampler OD 2.0 in. Drill Foreman Z. Vaughan Inspector J. Buckel SOIL CLASSIFICATION SURFACE ELEVATION SURFACE ELEVATION Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel Gray, dry, SAND (SP) with some gravel Gray, dry, SAND (SP) with some gravel A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities.	PRO	JECT NAME	Former AE	P Tanner's Cree	ek Gen	eratir	ng S	tatio	n		JOB# 170EM00522
Date Started	PRO	JECT LOCATIO	N <u>800 AEP Dr</u>	rive							
Date Started 2/1/18 Boring Method Geoprobe Date Completed 2/1/18 Sampler OD 2.0 in. Drill Foreman Z. Vaughan Inspector J. Buckel SOIL CLASSIFICATION SURFACE ELEVATION Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel Solic Classification Surphing Method Geoprobe 2.0 in. English de log of the boring to reduce the possibility of damaging unidentified underground utilities. Sampling Notes Sampling Notes Sampling Notes			Lawrenceb	urg, Indiana 47	025						
Date Completed 2/1/18 Sampler OD 2.0 in. Drill Foreman Z. Vaughan Inspector J. Buckel SOIL CLASSIFICATION SURFACE ELEVATION Brown, dry, sand and gravel (FILL) Gray, dry, COAL ASH Gray, dry, SAND (SP) with some gravel Sampling Notes Sampling Notes Sampling Notes 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 3.0 4.0 0.7 1.4 1.4			DRILLING and SA	MPLING INFORMA	ATION		г				TEST DATA
Date Completed 2/1/18 Sampler OD 2.0 in. Drill Foreman Z. Vaughan Inspector J. Buckel SOIL CLASSIFICATION SURFACE ELEVATION Brown, dry, sand and gravel (FILL) Gray, dry, SAND (SP) with some gravel Sampling Notes Sampling Notes Sampling Notes Sampling Notes 1.0 1.0 2.0 1.0 2.0 1.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6	D	ate Started	2/1/18	Boring Method _	Geopi	robe					
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4	D	ate Completed	2/1/18				_ in.				
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4	D	rill Foreman _	Z. Vaughan	Inspector	J. Bu	ckel	_			pors	
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4										le Va	Consulting Nation
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4										nizab	Sampling Notes
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4			SOIL CLASSIFICAT	LION				y (ft)	/ater	otoio	
Brown, dry, sand and gravel (FILL) Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 1.0 2.0 1.0 2.0 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.1 1.2 1.3 1.4			JOIL CLASSII IOA	TION	# E	를 <u>의</u>	aldı	over	nndw	al Pho n)	
Black, dry, COAL ASH Gray, dry, SAND (SP) with some gravel 5 - 3 1.4 feet of the boring to reduce the possibility of damaging unidentified underground utilities.			SURFACE ELEVAT	ΓΙΟΝ	Stra	Dep	San No.	Rec	Gro	Tota (ppr	
Gray, dry, SAND (SP) with some gravel 2.0 3.0 4.0 0.7 1.4		4)	1.0	-	1			1.0	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of
5 - 3					2.0	_	2	4.0		0.7	damaging unidentified underground utilities.
	3	Gray, dry, SAI	VD (SF) With Some 9	jiavei		-		4.0		0.7	
	1						3			1.4	
	3					5 -					
). A				-	4	4.0		0.8	
	1					-	5			0.7	
						-	Ĭ			• • • • • • • • • • • • • • • • • • • •	
]					10 -	6	4.0		0.5	
]	<u>.</u> 4				-					
The soil samples collected from the 0-2 ft and						-	7			0.8	The soil samples collected from the 0-2 ft and
18-20 ft intervals were submitted for laboratory analysis.]) 기				-	8	4.0		5.0	
	7					15 -					
9 5.4]					_	9			5.4	
10 4.0 6.9	1					_	10	4.0		6.0	
]					_	10	4.0		0.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7					20 -	11			2.1	
- wet, sand and gravel below 21 ft]	- wet, sand an	d gravel below 21 ft			-			-		
- wet, sand and gravel below 21 ft - wet, sand and gravel below 21 ft - 12 4.0 0.9 0.8	1					_	12	4.0		0.9	
25.0 25 13 1.0 0.8]				25.0	-	13			0.8	
Bottom of Boring at 25 ft	1	Bottom of Bor	ing at 25 ft		25.0	25 —		1.0			
	11										
					1	İ	1	I	i		
Drillers License No. 2581											

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 21.0 ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT Ports of Indiana BORING # B-11

PROJECT NAME Former AEP Tanner's Creek Generating Station JOB # 170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 2/1/18 Date Started Well Material Date Completed 2/1/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 1.0 Brown, dry, SAND and GRAVEL (GP) A hand-auger was used to advance the first five feet of the boring to reduce the possibility of 0.7 2 4.0 damaging unidentified underground utilities. 4.0 0.4 Gray, dry, SILTY SAND (SM) with little gravel 3 5 0.9 4 4.0 8.0 5 10 1.0 6 4.0 0.8 7 0.8 8 4.0 15 1.0 9 1.3 10 4.0 20 0.9 11 The soil samples collected from the 0-2 ft and 32-34 ft intervals were submitted for laboratory 0.7 12 4.0 analysis. 0.3 13 25 26.0 1.2 Gray, dry, CLAY (CL) 14 4.0 8.0 15 30 0.6 16 4.0 2.6 17 34.5 1.4 18 4.0 35 Brown, wet, coarse, SAND and GRAVEL (GP) 8.0 19 1.0 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 34.5 ft.

□ At Completion (open hole) -- ft.

 ▼ After -- hours -- ft.

☑ Cave Depth _____ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

	000 AED D /			
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522	
CLIENT	Ports of Indiana	BORING #	B-12	
	5		D 40	

DDC IFOT NAME	Former AFD Tenner's Cre	alı Car	ovetine (\:			170EM00E22
PROJECT NAME Former AEP Tanner's Creek Generating Station							JOB# 170EM00522
PROJECT LOCATION 800 AEP Drive							<u> </u>
	Lawrenceburg, Indiana 47						
	DRILLING and SAMPLING INFORM		1		TEST DATA		
Date Started	2/1/18 Boring Method	Geop	robe				
Date Completed	2/1/18 Sampler OD		2.0 in.				
Drill Foreman _	Z. Vaughan Inspector	J. Bu	ıckel			pors	
						e Va	
					izabl	Sampling Notes	
				E	ter	Total Photoionizable Vapors (ppm)	
SOIL CLASSIFICATION		_ ⊑ _	e e	very	ldwa	Phot	
	SURFACE ELEVATION	Stratum Depth	Depth Scale Sample	Recovery (ft)	Groundwater	Total I	
Brown, dry, S	AND and GRAVEL (GP)	000	- 1			2.1	A hand-auger was used to advance the first five
						1.3	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
			2	4.0			damagning anidentified anderground attitues.
Gray day SII	TY SAND (SM) with little gravel	5.0	5 = 3			4.1	
Gray, Gry, SiL	11 SAND (SW) WITH THE GRAVET		= 4	4.0		1.4	
国關			5	+		1.5	
-1111			10 =	١		3.0	
			6	4.0		3.0	
			7			1.0	
			15 - 8	4.0		1.6	
			9			3.9	
48				4		1.4	The soil samples collected from the 0-2 ft and
300			10	4.0			20-22 ft intervals were submitted for laboratory analysis. The duplicate 1 soil sample was collected
			20 11			9.2	from the 20-22 ft interval.
-1111			12	4.0		0.3	
#1111			25	\exists		0.3	
制制			23			2.8	
<u> </u>		28.0	14	4.0			
Gray/brown, o	Iry, CLAY (CL)	_	15			0.6	
- with some sa	and between 30-32 ft		30 = 16	4.0		1.9	
			17			0.8	
14		34.0		3.0	•		
	oarse, SAND and GRAVEL (GP)	35.0	35 - 18	4		0.5	
Bottom of Bor	ing at 30 it						
							Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 34.0 ft.

 $\bar{\nabla}$ At Completion (open hole)____ -- ft. **--**_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-13
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME Former AEP Tanner's Creek Generating Station					JOB# 170EM00522					
PROJECT LOCATION 800 AEP Drive						-				
	Lawrenceb	urg, Indiana	47025							-
	DRILLING and SA	AMPLING INFOF	RMATIC	N						TEST DATA
Date Started _	2/1/18	Well Material			PVC	_				
Date Completed	<u>2</u> /1/18	Well Diamete	r		1.0	_in.				
Drill Foreman	Z. Vaughan	Screen Lengt	h		10	_ft			pors	
Inspector	J. Buckel	Slot Size		-	0.010	_in.			e Va	
Boring Method	Geoprobe	Development	Metho	d	BLR	_			iizabl	Sampling Notes
	SOIL CLASSIFICATION	ON			Well Diagrai	n	ر#) ر#	water	notoior	
	SURFACE ELEVATION	ON	Stratum Depth	Depth Scale		Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
Black, dry, C	OAL ASH		0, 0			1	1		0.0	A hand-auger was used to advance the first five
				=		2	4.0		0.2	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
				=			4.0			garagang amazamas amazagasana amaza
- (1000) - (1000) - (1000) - (1000)				5 -		3			0.5	
- Cartes and Cartes an				=		4	4.0		0.1	
				=		5	1		0.5	
		10.0		10 -					1.4	
- gray, very f	ine, silty fly ash below	/ 10 ft				6	4.0		1.4	
				=		7			0.7	
- slightly moi	st between 14-16 ft			<u>-</u> 15 —		8	4.0		0.9	
						9			3.0	
- 				-					0.9	The soil samples collected from the 0-2 ft and
						10	4.0		0.9	28-30 ft intervals were submitted for laboratory
- COLUMN - C				20 —		11			1.2	analysis.
- MARAGE				=		12	4.0		0.5	
- aliabtly mai	et hetween 24 26 ft			=		13	-		0.0	
- Singritiy illol	st between 24-26 ft			25 —						
] =		14	4.0		0.3	
				=		15			1.1	
- wet with so	me sand below 30 ft			30 -		16	4.0	•	0.6	
			32.0	<u> </u>			•		0.9	
Gray/brown,	dry, CLAY (CL)					17	3.0			
Bottom of Bo	oring at 35 ft		35.0	35 —		18	1		1.2	A temporary well was installed in this boring for
DOUGHI OF BO	ning at 55 It									the collection of a groundwater sample.
										Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools ______ ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

B-14 Ports of Indiana BORING # CLIENT Former AEP Tanner's Creek Generating Station 170EM00522 JOB# PROJECT NAME

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/29/18 Date Started Well Material Date Completed 1/29/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 0.3 COAL ASH A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 0.3 2 4.0 damaging unidentified underground utilities. 1.0 3 1.6 4 4.0 2.7 5 10 1.1 - gray, dry, very fine, silty fly ash below 10 ft 6 4.0 0.2 7 2.5 8 4.0 15 8.0 9 6.7 10 4.0 20 24.1 11 The soil samples collected from the 0-2 ft and 28-30 ft intervals were submitted for laboratory 4.8 12 4.0 analysis. The MS/MSD soil sample was collected from the 0-2 ft interval. 14.8 - black/gray below 24 ft 13 25 - moist between 24-25 ft 0.0 14 4.0 28.0 42.5 Dark grayish brown, slightly moist, CLAY (CL) 15 30 9.5 16 4.0 6.6 - wet with some sand between 32-34 ft 17 4.1 - gray/brown below 34 ft 18 4.0 35 0.0 19 1.8 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 32.0 ft.

At Completion (open hole) ____ ft. -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer - Bladder Pump BP

PP - Peristaltic Pump

- Whale Pump

B-15 Ports of Indiana BORING # CLIENT Former AEP Tanner's Creek Generating Station 170EM00522 JOB# PROJECT NAME

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/29/18 Date Started Well Material Date Completed 1/29/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 1.2 COAL ASH A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 1.0 2 4.0 damaging unidentified underground utilities. 1.5 3 5 1.7 4 4.0 2.4 5 10 0.9 - gray, dry, very fine, silty fly ash below 10 ft 6 4.0 0.9 7 1.8 8 4.0 15 1.2 - black/gray and moist between 16-18 ft 9 0.8 10 4.0 20 17.2 11 The soil samples collected from the 0-2 ft and 32-34 ft intervals were submitted for laboratory 18.6 12 4.0 analysis. - black/gray and moist between 23-25 ft 2.4 13 25 0.9 14 4.0 15.8 15 30.0 30 17.1 Dark grayish brown, slightly moist, CLAY (CL) 16 4.0 38.1 17 12.9 18 4.0 35 - wet with some sand between 34.5-37 ft 0.0 19 - gray/brown below 37 ft 0.0 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 34.5 ft.

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

- Whale Pump

CLIENT Ports of Indiana BORING # B-16

PROJECT NAME Former AEP Tanner's Creek Generating Station JOB # 170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/29/18 Date Started Well Material Date Completed 1/29/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 1.3 COAL ASH A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 1.2 2 4.0 damaging unidentified underground utilities. 2.6 3 5 4.0 4 4.0 2.3 5 10 2.8 - gray, dry, very fine, silty fly ash below 10 ft 6 4.0 7.9 7 7.8 8 4.0 15 - moist between 15-17 ft 2.7 9 12.4 10 4.0 20 6.6 11 The soil samples collected from the 0-2 ft and 34-36 ft intervals were submitted for laboratory 12.6 12 4.0 analysis. 5.6 13 25 - moist between 25-27 ft 4.2 14 4.0 10.0 15 30 8.9 16 4.0 32.0 20.7 Dark grayish brown, slightly moist, CLAY (CL) 17 70.6 - with some sand between 34-38 ft 18 4.0 35 1.3 - wet between 36-38 ft 19 1.2 - grayish brown below 38 ft 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 36.0 ft.

✓ At Completion (open hole) -- ft. ✓ After -- hours -- ft.

Cave Depth

The state of the s

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-17
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION	800 AEP Drive		

Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA 1/31/18 Boring Method **Geoprobe** Date Started 1/31/18 Date Completed Sampler OD Total Photoionizable Vapors J. Buckel Drill Foreman Z. Vaughan Inspector Sampling Notes Groundwater SOIL CLASSIFICATION Recovery Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 1.6 Brown, dry, sand, gravel, and clay (FILL) 1 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of 1.4 2 4.0 damaging unidentified underground utilities. 0.8 3 6.0 0.3 Gray, dry, SILTY SAND (SM) with trace gravel 4.0 4 0.2 5 10 1.8 6 4.0 1.3 7 0.7 8 4.0 15 1.7 9 0.9 4.0 10 20.0 0.3 Gray/brown, dry, SILTY CLAY (CL) 11 The soil samples collected from the 0-2 ft and 32-34 ft intervals were submitted for laboratory 0.4 12 4.0 analysis. 1.0 - moist between 24-26 ft 13 25 0.2 14 4.0 1.5 15 30.0 30 0.6 Gray, dry, SILTY SAND (SM) 4.0 16 1.6 17 0.1 - wet with gravel between 34-36 ft 18 4.0 35 36.0 0.9 Gray, dry, CLAY (CL) 19 1.4 20 4.0 40.0 40 Bottom of Boring at 40 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools _ **34.0** ft.

At Completion (open hole)____ -- ft.

-- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 2581

BP - Bladder Pump

PΡ - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-18
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

	Ports of Indiana			BORING #	D-10			
PROJECT NAME		JOB #	170EM00522					
PROJECT LOCATIO								
	Lawrenceburg, Indiana 47	7025						
	DRILLING and SAMPLING INFORM	ATION					TEST DA	ATA
Date Started	1/30/18 Boring Method _	Geop	robe					
Date Completed	1/30/18 Sampler OD	-	2.0 in.					
Drill Foreman _	Z. Vaughan Inspector	J. Bu	ckel			pors		
					e Va	_		
						lizab	Samp	ling Notes
	0011 01 4001510 451041			€	ater	Total Photoionizable Vapors (ppm)		
	SOIL CLASSIFICATION	# E E	e H	Recovery (ft)	Groundwater	Pho (e		
	SURFACE ELEVATION	Stratum Depth	Depth Scale Sample	Reco	Grou	Total (ppm)		
Dark brown, d	lry, sand, gravel, and clay (FILL)		_ 1			2.6	A hand-auger was used	to advance the first five
∄			2	4.0		0.0	feet of the boring to red damaging unidentified (underground utilities.
			5 = 3	-		1.1		
			4	4.0		4.7		
Gray dry ver	 y fine, silty fly ash (COAL ASH)	8.0	= 5	-		0.8		
Gray, Gry, Vor	y line, only ny don (OONE NON)		10 = 6	4.0		1.4		
			‡	4.0		0.0		
Section 1			7			0.9		
			15 = 8	4.0				
			9			0.0		
			20 = 10	4.0		6.5		
- Canada A			11			5.6	The soil samples collect	ted from the 0-2 ft and submitted for laboratory
- moist betwee	en 22-23 ft		12	4.0		5.7	analysis.	submitted for fasoratory
			25 13			2.2		
		28.0	14	4.0		19.6		
Dark grayish I	orown, slightly moist, CLAY (CL)	28.0	15			9.0		
			30 = 16	4.0		5.8		
			17		•	11.2		
- wet with som	ne sand between 33-35 ft		35 - 18		-	6.1		
- gray/brown a	and dry below 35 ft		19			2.6		
			—	1,		9.8		
		40.0	40 = 20	4.0		0.0		
Bottom of Bor	ring at 40 ft							
							Drillers License No. 258	31

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 33.0 ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP

- Bladder Pump - Peristaltic Pump PP

CLIENT Ports of Indiana BORING # B-19
PROJECT NAME Former AEP Tanner's Creek Generating Station JOB # 170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/30/18 Date Started Well Material Date Completed 1/30/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 3.7 Dark brown, dry, sand, and gravel (FILL) A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 1.2 2 4.0 damaging unidentified underground utilities. 1.7 3 6.0 0.3 Gray, dry, very fine, silty fly ash (COAL ASH) 4 4.0 0.8 5 10 0.1 - moist between 10-12 ft 6 4.0 0.6 7 2.1 8 4.0 15 3.9 9 5.9 10 4.0 - moist between 18-20 ft 20 16.0 11 The soil samples collected from the 0-2 ft and 30-32 ft intervals were submitted for laboratory 29.4 12 4.0 analysis. 1.7 13 25 1.1 14 4.0 28.0 18.5 Dark gray/brown, dry, CLAY (CL) 15 30 31.7 16 4.0 32.0 7.8 Gray, wet, SILTY SAND (SM) 17 34.0 8.2 Gray/brown, dry, CLAY (CL) 18 4.0 35 0.7 19 0.0 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 32.0 ft.

✓ At Completion (open hole) -- ft.
✓ After -- hours -- ft.

Cave Depth
 Tell

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump

- Whale Pump

CLIENT	Ports of Indiana	BORING #	B-20
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME Former AEP Tanner's Creek Generating St					atio	n		JOB# 170EM00522		
PROJECT LOCATION 800 AEP Drive										
		<u>Lawrencebu</u>	urg, Indiana 470)25						
		DRILLING and SAI	MPLING INFORMA	TION		Г				TEST DATA
D	ate Started	1/30/18	Boring Method _	Geop						
	•	1/30/18	Sampler OD _	2.0 in.		in.				
D	rill Foreman _	Z. Vaughan	Inspector	J. Bu	ickel	.			∕ароі	
									able '	Sampling Notes
					1		(£)	er	ioniz	
	SOIL CLASSIFICATION		E	_	<u>e</u>	ery (ıdwat	Photo		
		SURFACE ELEVAT	ION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
	Brown, dry, sa	und, and gravel (FILL)		0, 0	=	1			2.6	A hand-auger was used to advance the first five
\mathbb{R}					=	2	4.0		0.2	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
					5 —	3			0.0	
	8					4	4.0		0.0	
	Gray, dry, ver		 DAL ASH)	8.0	=	5			0.0	
					10 =	6	4.0		0.0	
						7			0.0	
	- moist betwee	en 13-15 ft			15 —	8	4.0		0.0	
						9			0.5	
						10	4.0		14.0	
	- moist betwee	en 20-23 ft			20 =	11			17.2	The soil samples collected from the 0-2 ft and
						12	4.0		4.8	28-30 ft intervals were submitted for laboratory analysis.
					25 —	13			0.0	
	Gray, dry, CL	 AY (CL)		26.0		14	4.0		0.0	
					=	15			38.0	
1				20.0	30 =	16	4.0		11.6	
\mathbb{R}^{n}	Gray, wet, SA	ND (SP) with little gra	 avel	32.0	=	17		•	0.0	
	해 하			20.0	35 —	18	4.0		0.0	
	Gray/brown, d	ry, CLAY (CL)		36.0		19			0.0	
1				40.0		20	4.0		0.0	
7	Bottom of Bor	ing at 40 ft		40.0	40 -					
										Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 32.0 ft.

At Completion (open hole)____ --_ ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-21
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME	Former AEP Tanner's Creek Generating Station							JOB# 170EM00522		
PROJECT LOCATION _									_	
_	Lawrenceburg, Indiana	47025	j						-	
DRILLING and SAMPLING INFORMATION									TEST DATA	
Date Started1/5	30/18 Well Materia	l		PVC	_					
Date Completed 1/3	30/18 Well Diamet	er		1.0	_in.					
Drill Foreman	Vaughan Screen Leng	ıth		10	_ft			pors		
Inspector	Buckel Slot Size		in.				e Va			
Boring Method	eoprobe Developmen	t Metho	MethodBLR					ıizabl	Sampling Notes	
SOIL CLASSIFICATION		E		Well Diagran	ם מ	Recovery (ft)	Groundwater	Photoionizable Vapors		
SURI	FACE ELEVATION	Stratum Depth	Depth Scale		Sample No.	Recov	Groun	Total F (ppm)		
Dark brown, dry, s	and, and gravel (FILL)				1			0.0	A hand-auger was used to advance the firs feet of the boring to reduce the possibility of	t five
			-		2	4.0		0.0	damaging unidentified underground utilities	" }.
<u>-</u>			5 -		3			0.0		
=		8.0	5 -		4	4.0		0.0		
Gray, dry, very fine	y, dry, very fine, silty fly ash (COAL ASH)		-		5			0.2		
			10 -		6	4.0		0.0		
— ************************************					7			0.0		
— — — — — — — — — — — — — — — — — — —					8	4.0		0.0		
			15 -		_	4.0		1.3		
- moist between 1	7-18 ft		-		9			0.0		
			20 -		10	4.0				
- moist between 2	1-23 ft		-		11			13.7	The soil samples collected from the 0-2 ft a 28-30 ft intervals were submitted for labora	and story
			=		12	4.0		6.7	analysis.	
		26.0	25 –		13			0.0		
Gray, dry, SILTY (CLAY (CL)	1	=		14	4.0		15.3		
=					15			37.0		
		20.0	30 -		16	4.0		2.5		
☐ ☐ Grav. wet. SAND	and GRAEL (GP)	32.0	-		17		•	0.0		
Gray, dry, SILTY (CLAY (SC)	34.0	35 -		18	4.0		0.0		
Gray, dry, SILTY	, ,		55		19			0.0		
=[/]			=		20	4.0		1.2		
Bottom of Boring a	ot 40 ft	40.0	40 -		20	4.0			A temporary well was installed in this begin	a for
Dollotti oi Boring a	ત્રા 4 ∪ II								A temporary well was installed in this borin the collection of a groundwater sample.	y ior
									Drillers License No. 2581	

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

● Noted on Drilling Tools 32.0 ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours

--_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

FROME TOTTIEL ALI TAITHELS OFER GENERALING STATION	JOD #	I / ULIVIUUULL
PROJECT NAME Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
CLIENT Ports of Indiana	BORING #	B-22

CLIENT	Ports of Indiana							BORING #_	B-22	
PROJECT NAME	Former AEP Tanner's C	reek Gen	eratir	ıg S	tatio	n		JOB #	170EM00522	
PROJECT LOCATIO	N 800 AEP Drive									
	Lawrenceburg, Indiana	47025								
	DRILLING and SAMPLING INFOR	RMATION		г				TEST	T DATA	
Date Started	1/30/18 Boring Metho	d Geop	robe							
Date Completed	1/30/18 Sampler OD	-	<u> </u>							
Drill Foreman _	J. Bu	ickel	_			pors				
							e Va			
							iizabl	Sa	ampling Notes	
					(#)	ater	Photoionizable Vapors)			
	SOIL CLASSIFICATION	§ _	ه ک	ble	Recovery (ft)	Groundwater	Pho			
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recc	Grou	Total F (ppm)			
Brown, dry, sa	and, and gravel (FILL)		=	1			0.0	A hand-auger was u	used to advance the first five	
∃ ⊗			=	2	4.0		0.0	damaging unidentifi	reduce the possibility of ed underground utilities.	
38			5 -	3			0.0			
				4	4.0		0.0			
			=	5			0.0			
Gray day yar	y fine, silty fly ash (COAL ASH)	10.0	10 -	6	4.0		0.0			
Gray, dry, ver	y lille, silly lly asil (COAL ASH)				4.0		0.0			
			=	7	-					
			15 -	8	4.0		7.3			
			=	9			10.4			
			-	10	4.0		15.9			
- dark gray be	low 20 ft		20 —	11			14.3	The soil samples co	ollected from the 0-2 ft and ere submitted for laboratory	
			=	12	4.0		6.8	analysis.	ere submitted for laboratory	
- moist betwee	en 24-27 ft		25 —	13			16.9			
			=	14	4.0		2.2			
			=	15			11.3			
Dark gray/bro	wn, slightly moist, CLAY (CL)	30.0	30 -	16	4.0		0.9			
- silty below 3	1 ft ne sand between 32-35 ft] =	17		٠	0.5			
- wet with soft	IC Sand Delween UZ-UJ II				4.0		1.2			
- gray/brown a	and dry below 35 ft		35 -	18	4.0		0.0			
#			=	19						
3		40.0	40 -	20	4.0		1.4			
Bottom of Bor	ing at 40 ft		-10							
								Drillers License No.	2591	
								Dilliera Liceriae No.	2001	

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

32.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP

- Bladder Pump - Peristaltic Pump PP

CLIENT PROJECT NAME_		BORING # JOB #										
PROJECT LOCATI	ON 800 AEP D r											
	<u>Lawrenceb</u>											
	DRILLING and SA	TEST	DATA									
Date Started _	1/31/18	Well Material	Well MaterialPVC									
Date Completed	<u>1/31/18</u>	Well Diameter 1.0 in.										
Drill Foreman	Z. Vaughan	Screen Lengt	th		10	ft			pors			
Inspector	J. Buckel	Slot Size								_		
Boring Method	Geoprobe	Development	d	BLR	_			izabl	S:	ampling Notes		
	SOIL CLASSIFICATION		Stratum Depth	Depth Scale	Well Diagrai	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
GRAVEL			0.3	=		1			104		s used to advance the first five	
Black, dry, C			3.0	=		2	4.0		6.3	damaging unider	to reduce the possibility of tified underground utilities.	
Brown, dry,	CLAY (CL)			5 —		3	_		3.4			
=						4	4.0		3.0			
						5			19.6			
				10 -		6	4.0		205			
=				=		7			4.4			
						8	4.0		3.4			
=				15 —		9	4.0		9.1			
_				<u>-</u>		10	4.0		11.4			

168

8.1

6.0

8.0

6.0

14.5

2.7

8.0

1.3

6.5

11

12 4.0

13

14 4.0

15

17

18 4.0

19

20 4.0

4.0 16

25

30

35

40

34.0

38.0

40.0

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

Gray, dry, SILTY SAND (SM)

Gray, dry, CLAY (CL)

Bottom of Boring at 40 ft

- wet between 26-28 ft

- gray/brown with increasing silt content below 20

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools **26.0** ft. At Completion (open hole)____ -- ft.

--_ ft. ▼ After -- hours --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

A temporary well was installed in this boring for the collection of a groundwater sample.

Drillers License No. 2581

The soil samples collected from the 0-2 ft and 10-12 ft intervals were submitted for laboratory

analysis. The MS/MSD soil sample was collected from the 0-2 ft interval.

> - Bladder Pump BP PP - Peristaltic Pump - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-24
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT LOCATION ____ 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/31/18 Date Started Well Material Date Completed 1/31/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length ___ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 114 Dark brown, dry, sand, gravel, and clay (FILL) A hand-auger was used to advance the first five feet of the boring to reduce the possibility of 2.3 2 4.0 damaging unidentified underground utilities. 4.2 3 5 0.0 4 4.0 8.0 7.4 Brown, dry, CLAY (CL) 5 10.0 10 4.5 Brown, dry, SAND and GRAVEL (GP) 6 4.0 -b₀0 1.6 7 1.2 8 4.0 15 16.0 1251 Gray/brown, dry, CLAY (CL) 9 1.0 10 4.0 20 0.0 - brown below 20 ft 11 The soil samples collected from the 0-2 ft and 16-18 ft intervals were submitted for laboratory 0.0 12 4.0 analysis. 0.0 13 25 - wet with some sand below 25 ft 0.0 14 4.0 0.0 15 30.0 30 0.0 Gray, dry, SILTY CLAY (CL) 4.0 16 0.0 17 0.0 18 4.0 35 0.0 19 0.0 4.0 20 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 25.0 ft.

□ At Completion (open hole) -- ft.
 □ After -- hours -- ft.

Cave Depth ____ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-25
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
DDO IFOT I COATION	OOD AED Drive		

PROJECT NAME	Former AEP Tanner's Cree	g St	atio	n	JOB# 170EM00522					
PROJECT LOCATION										
_	Lawrenceburg, Indiana 470	025						<u></u>		
DI	RILLING and SAMPLING INFORMA	TION		Г				TEST DATA		
	Boring Method _	-								
· · · · · · · · · · · · · · · · · · ·	31/18 Sampler OD _ Vaughan Inspector						ည			
Drill Foreman <u>Z.</u>	J. Bu	ickei	-			Vаро				
							able	Sampling Notes		
		T	I		(tt)	ter	Total Photoionizable Vapors (ppm)			
SOI	L CLASSIFICATION	<u> </u>		əle	very (ndwa	Phot			
SUI	RFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total I (ppm)			
Brown, dry, sand,		1.0	=	1			1.4	A hand-auger was used to advance the first five		
Gray, moist, CLAY	and SAND (SC)	4.0	-	2	4.0		0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.		
Dark brown, dry, C	 CLAY (CL)	4.0	5 —	3			1.5			
				4	4.0		1.4			
			=	5			685			
- moist with some	silt between 10-12 ft		10 =	6	4.0		968			
			=	7			106			
			15 —	8	4.0		11.9			
			=	9			6.2			
			=	10	4.0		8.8			
Brown, dry, SILTY	 CLAY (CL)	20.0	20 =	11			0.5	The soil samples collected from the 0-2 ft and		
			=	12	4.0		2.4	10-12 ft intervals were submitted for laboratory analysis.		
			25 —	13		٠	0.0			
- wet with sand be	low 25 ft		=	14	4.0		0.0			
			=	15			0.0			
			30 -	16	4.0		0.4			
			=	17			0.0			
			35 —	18	4.0		0.2			
			=	19			0.1			
		40.0	=	20	4.0		0.0			
Bottom of Boring a	ut 40 ft	40.0	40 —							
								Dillow Linear No. 0504		
								Drillers License No. 2581		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

25.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-26
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 1/31/18 Date Started Well Material Date Completed 1/31/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length ___ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 1.8 Dark brown, dry, sand, gravel, and clay (FILL) A hand-auger was used to advance the first five feet of the boring to reduce the possibility of 1.5 2 4.0 damaging unidentified underground utilities. 5.0 3 5 3.8 4 4.0 8.0 4.2 Brown, dry, CLAY (CL) 5 10.0 10 4.5 Gray, dry, SAND (SP) with trace gravel 6 4.0 0.6 7 1.4 8 4.0 15 7.4 9 18.0 247 Gray/brown, dry, SILTY CLAY (CL) 10 4.0 20 14.8 11 The soil samples collected from the 0-2 ft and 24-26 ft intervals were submitted for laboratory 529 12 4.0 analysis. 1074 13 25 25.8 - wet with some sand below 26 ft 14 4.0 33.9 15 30 270 4.0 16 32.0 138 Gray, dry, SILTY SAND (SM) 17 40.2 18 4.0 35 104 19 32.5 4.0 20 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

26.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

- Whale Pump

CLIENT	Ports of Indiana	BORING #	B-27
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 2/5/18 Date Started Well Material Date Completed 2/5/18 **1.0** in. Well Diameter Total Photoionizable Vapors Z. Vaughan Drill Foreman Screen Length ___ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 6.5 Black, slightly moist, COAL ASH A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 1.4 2 4.0 damaging unidentified underground utilities. 5.6 - gray, dry, silty sand, very fine fly ash 3 2.3 4 4.0 6.4 5 10 3.7 6 4.0 4.7 2.1 8 4.0 15 - moist between 15-17 ft 2.6 9 1.4 10 4.0 20 1.1 11 0.9 12 4.0 2.5 13 25 - moist between 25-28 ft The soil samples collected from the 0-2 ft and 4.3 14 4.0 48-50 ft intervals were submitted for laboratory 5.0 analysis. 15 30 3.4 16 4.0 3.5 17 5.0 18 4.0 35 0.2 19 0.9 20 4.0 40 1.2 21 2.5 - wet with little gravel between 42-44 ft 22 4.0 5.6 45.0 23 Gray/brown, slightly moist, CLAY (CL) 0.0 24 4.0 1.7 - brown below 48 ft 25 50.0 2.0 50 Bottom of Boring at 50 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 42.0 ft.

□ At Completion (open hole) -- ft.
 □ After -- hours -- ft.

Cave Depth

ft.

ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-28
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
PROJECT LOCATION	800 AEP Drive		

Lawrenceburg, Indiana 47025

	DRILLING and S	AMPLING INFORMA		TEST DATA						
Date Starte Date Comp Drill Forem Inspector Boring Met	an Z. Vaughan J. Buckel	Well Diameter _ Screen Length _			_in. _ft _in.			able Vapors	Sampling Notes	
	SOIL CLASSIFICATI	ION	Depth Depth Scale	Well Diagram		Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
Black,	dry, COAL ASH		- - - - - - - 5 —		2	4.0		1.8 1.2 0.9	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities.	
- Control Cont			10 -		5	4.0		1.6 0.5 0.2		
- Mondanders - Manager - M			15 -		7	4.0		1.6 1.7 1.2	The soil samples collected from the 0-2 ft and 28-30 ft intervals were submitted for laboratory	
	wet, SAND (SP) e sand and gravel betweer		9.0		10	4.0	ē	0.4	analysis.	
	dry, CLAY (CL)		5.0 25 -		12 13 14	4.0		1.4 0.8 1.0		
=	dry, SILT (ML) of Boring at 30 ft		3.0		15	2.0		2.0		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools ______ ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours __

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

Drillers License No. 2581

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump WP - Whale Pump

CLIEN	JENT Ports of Indiana								BORING #
PROJ	ECT NAME Former AEP Tanner's	Creek (Gener	ating S	Statio	on			JOB # 170EM00522
PROJ	ECT LOCATION 800 AEP Drive								_
	Lawrenceburg, Indiana	a 47025	j						_
	DRILLING and SAMPLING INFO	ORMATIC	N						TEST DATA
Da	te Started 2/6/18 Well Materi	al							
	te Completed 2/6/18 Well Diame				in.				
			thf					ors	
Ins	pector J. Buckel Slot Size							Уар	
Во	ring Method Geoprobe Developme							zable	Sampling Notes
			1			Œ.	Ē	oioni	
	SOIL CLASSIFICATION	E	E _ I	Well Diagram	<u>o</u>	ery (Groundwater	2hot	
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Diagram	Samp No.	Recovery (ft)		Total Photoionizable Vapors (ppm)	
=00	Brown, dry, SAND and GRAVEL (GP)		=		1			1.0	A hand-auger was used to advance the first five
=	 Brown, dry, CLAY (CL)	2.0	-		2	4.0		0.8	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
-			=		3			1.3	
-///			5 -		3				
=[//			=		4	4.0		0.4	
=			=		5			1.6	
-///			10 -		6	4.0		1.2	
=			_					10.2	
-			=		7				
-///	- gray below 14 ft		15 -		8	4.0		907	
=			=		9			613	
=			=		10	4.0		331	The soil samples collected from the 0-2 ft and
= //			20 -			7.0		1.7	14-16 ft intervals were submitted for laboratory analysis.
=			=		11			1.7	
- //	 Brown, dry, SILTY SAND (SM)	23.0	-		12	4.0		2.1	
_	Blown, dry, SILTT SAND (SIM)		25 —		13			0.4	
			= =		14	4.0		1.1	
-			-					0.8	
			20 =		15		•	0.6	
	- wet below 30 ft		30 -		16	4.0	-	1.6	
-			=		17			1.2	
		35.0	35 —		18	3.0		1.5	
	Bottom of Boring at 35 ft							-	
									Dellara Lianna Na 0504
	/ - Total Photo-lonization Vapors		Depth	to Groui	∟ ndwa	ter	ш		Drillers License No. 2581 HSA - Hollow Stem Augers

● Noted on Drilling Tools _____ **30.0** ft.

▼ After ____ hours ___

☑ Cave Depth

--_ ft.

--_ ft.

ENV_GEOPROBE_WELL REV1 170EM00522.GPJ ATCENVGE.GDT 5/9/18

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 Date Started 2/6/18 Well Material Date Completed 2/6/18 Well Material Date Completed 2/6/18 Well Diameter Inspector J. Buckel Sics Size In. SOIL CLASSIFICATION SURFACE ELEVATION SURFACE ELEVATION For any complete state of the property of th	CLIE	ΕN	TPorts of Indiana	BORING #								
Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA	PRO	JJE	ECT NAME Former AEP Tanı	ner's Cı	eek C	ener	ating S	Statio	on			JOB # 170EM00522
Date Started 2/6/18 Well Material Date Completed 2/6/18 Well Diameter	PRO	JJE	ECT LOCATION 800 AEP Drive									_
Date Started 2/6/18 Well Material			Lawrenceburg, Ir	ndiana 4	17025							_
Date Completed 2/6/18 Well Diameter in. Drill Foreman Z. Vaughan Screen Length ft Slot Size Inspector J. Bucket Slot Size Ins			DRILLING and SAMPLIN	G INFOR	MATIC	N						TEST DATA
Date Completed 2/6/18 Well Diameter in. Drill Foreman Z. Vaughan Screen Length ft Slot Size Inspector J. Bucket Slot Size Ins	_)at	ta Started 2/6/18 Well	Material								
Drill Foreman Inspector J. Buckel Slot Sizein. SOIL CLASSIFICATION								in				
Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) Dark brown to brown, dry, SANDY SILT (SM) Dark below 22 ft Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. Dark brown and coal Ash Dark brown and coal Ash Dark brown and coal Ash Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM)			· · · · · · · · · · · · · · · · · · ·								ors	
Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) Dark brown to brown, dry, SANDY SILT (SM) Dark below 22 ft Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. Dark brown and coal Ash Dark brown and coal Ash Dark brown and coal Ash Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM)											Vapo	
Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) Dark brown to brown, dry, SANDY SILT (SM) Dark below 22 ft Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. Dark brown and coal Ash Dark brown and coal Ash Dark brown and coal Ash Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM)											able	Sampling Notes
Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) Dark brown to brown, dry, SANDY SILT (SM) Dark below 22 ft Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and COAL ASH 1.6 Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. Dark brown and coal Ash Dark brown and coal Ash Dark brown and coal Ash Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM)				лоринопі				-		_	oniza	
Dark brown, dry, CLAY (CL) Dark brown to brown, dry, SANDY SILT (SM) Dark brown to brown, dry, SANDY SILT (SM) Dark below 22 ft Dark brown and COAL ASH 1.6 Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. Dark brown and coal Ash and auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 1.6 Dark brown, dry, CLAY (CL) 10 Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 17 Dark brown to brown, dry, SANDY SILT (SM) 18 Dark brown to brown, dry, SANDY SILT (SM) 19 Dark brown to brown, dry, SANDY SILT (SM) 11 Dark brown to brown, dry, SANDY SILT (SM) 15 Dark brown to brown, dry, SANDY SILT (SM) 16.0 17 Dark brown to brown, dry, SANDY SILT (SM) 18 Dark brown to brown, dry, SANDY SILT (SM) 19 Dark brown to brown, dry, SANDY SILT (SM) 10 Dark brown to brown, dry, SANDY SILT (SM) 11 Dark brown to brown, dry, SANDY SILT (SM) 11 Dark brown to brown, dry, SANDY SILT (SM) 11 Dark brown to brown, dry, SANDY SILT (SM)	SOIL CLASSIFICATION				V Dia		Well Diagram		ıy (ft	lwate	hotoi	
Dry, sand, gravel, and COAL ASH 1		SURFACE ELEVATION			Stratun Depth	Depth Scale	Diagram	Sample No.	Recove	Ground	Total P (ppm)	
Dark brown, dry, CLAY (CL) 9.0 10 6 4.0 7 15 7 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 2 4.0 0.8 0.1 10 6 4.0 0.5 7 1.2 The soil samples collected from the 0-2 ft and 24-25 ft intervals were submitted for laboratory analysis. 16.0 17 18 19 10 10 10 10 11 11 12 1.0 13 10 1.3	- Dry, sand, gravel, and COAL ASH											A hand-auger was used to advance the first five
2 4.0 0.8 0.1						=						feet of the boring to reduce the possibility of damaging unidentified underground utilities.
Dark brown, dry, CLAY (CL) 9.0 10	— 					_		2	4.0		0.8	
Dark brown, dry, CLAY (CL) 9.0 10	-					_		_			0.1	
9.0 5 0.6 0.5 1.2 The soil samples collected from the 0-2 ft and 24-25 ft intervals were submitted for laboratory analysis. 1.2 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.6	_					5 —		3			0.1	
9.0 10 5 0.6 0.5 1.2 The soil samples collected from the 0-2 ft and 24-25 ft intervals were submitted for laboratory analysis. Dark brown to brown, dry, SANDY SILT (SM) 16.0 17 18 4.0 0.5 1.2 1.4 1.4 1.4 1.4 1.4 1.5 1	-					_		4	4 0		0.7	
Dark brown, dry, CLAY (CL) 10	-					_						
Dark brown, dry, CLAY (CL) 10	-				9.0	_		5			0.6	
16.0 1.2 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.2 1.3 1.4 1.4 1.4 1.5 1.5 1.4 1.5	-		Dark brown, dry, CLAY (CL)			10 -						
Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 17.0 18.	-//					-		6	4.0		0.5	
Dark brown to brown, dry, SANDY SILT (SM) 16.0 Dark brown to brown, dry, SANDY SILT (SM) 16.0 17.0 18.	-//					_					1.0	
Dark brown to brown, dry, SANDY SILT (SM) 16.0 15 - 9 10 4.0 0.5 1.4 - wet below 22 ft 25.0 25	-//					_		/			1.2	The soil samples collected from the 0-2 ft and
Dark brown to brown, dry, SANDY SILT (SM) 16.0 15	-					=		8	4 0		1.6	
Dark brown to brown, dry, SANDY SILT (SM) - wet below 22 ft 25.0 25 - 13 1 0 1.3	-//				16.0	15 —			4.0			
- wet below 22 ft - wet below 22 ft 25.0 25 - 13 1.0 1.3	-		Dark brown to brown, dry, SANDY SILT (S	M)	10.0	=		9			1.2	
- wet below 22 ft - wet below 22 ft 25.0 25 - 13 1.0 1.3						_						
- wet below 22 ft	_					_		10	4.0		0.5	
- wet below 22 ft	-11					20 —					1.4	
- wet below 22 ft						_		11			1.4	
25.0 25 - 13 1.0 1.3	_		- wet below 22 ft			_		12	4.0	•	0.2	
25.0 25 - 10 1	- -					_		'-				
	-				25.0	OF -		13	1 0		1.3	
			Bottom of Boring at 25 ft			25			1.0			
Drillers License No. 2581												Drillers License No. 2581

ENV_GEOPROBE_WELL REV1 170EM00522.GPJ ATCENVGE.GDT 5/9/18

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **22.0** ft.

 □ At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours ___

☑ Cave Depth **--**_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

	OOO AED Duits			
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522	
CLIENT	Ports of Indiana	BORING #	B-31	

PROJECT NAME Former AEP Tanner's Creek Generating Station									ation JOB# 170EM00522				
PROJ	ECT LOCATIO									<u> </u>			
	Lawrenceburg, Indiana 47025												
		DRILLING and SA	AMPLING INFORMA	TION		F				TEST DATA			
Da	te Started	2/5/18	Boring Method	Geop									
	te Completed	2/5/18	Sampler OD _		2.0	in.			δ				
Dri	II Foreman	Z. Vaughan	Inspector	J. Bu	скеі				√apo				
									able	Sampling Notes			
				1			Œ	er	ioniz				
		SOIL CLASSIFICA	TION	E		<u>e</u>	ery (Groundwater	Photo				
		SURFACE ELEVA	TION	Stratum Depth	Depth Scale Sampl	Sample No.	Recovery (ft)		Total Photoionizable Vapors (ppm)				
	Dark brown, d	ry, SAND and GRA	/EL (GP)	2.0	=	1			42.9	A hand-auger was used to advance the first five			
	Gray, dry, very	fine, silty fly ash (C	COAL ASH)		2		4.0		3.2	feet of the boring to reduce the possibility of damaging unidentified underground utilities.			
					5 =	3			4.4				
						4	4.0		2.7				
						5			5.5				
					10 -	6	4.0		6.2				
	- dark brown b	etween 12-14 ft				7			4.7				
					15	8	4.0		5.6				
						9			1.1				
				20.0		10 4.	4.0		4.7				
	Dark brown, d	ry, CLAY (CL)			20	11			5.9	The soil samples collected from the 0-2 ft and 38-40 ft intervals were submitted for laboratory			
1//							12	4.0		1.8	analysis.		
3/4/	Gray dry yon	 / fine, silty fly ash (C		25.0	25 -	13			4.2				
	Ciay, dry, very	ine, silly hy ash (C	OAL ASII)			14	4.0		1.3				
	STATEMENT STATEM					15			2.4				
	AGENTAL STATE OF THE STATE OF T				30 =	16	4.0		1.5				
	- wet below 33	ı ft			=	17		₽	1.8				
	Wet Delow 33	, II		36.0	35 =	18	4.0		2.6				
3	Gray, dry, CLA	AY (CL)				19			3.0				
#//	- brown below	38 ft		40.0		20	4.0		1.2				
	Bottom of Bori	ing at 40 ft			40 -								
										Drillers License No. 2581			

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 33.0 ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer BP

- Bladder Pump - Peristaltic Pump PP

CLIENT	Ports of Indiana	BORING #	B-32
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

CLIENT	Ports of inc	aiana							BORING #	D-92		
PROJECT NAME	Former AEI	JOB #	170EM00522									
PROJECT LOCAT	TION 800 AEP Dr											
	Lawrenceb	urg, Indiana 470)25						<u></u>			
	DRILLING and SA	TEST	DATA									
Date Started	2/5/18	Boring Method	Geop	robe								
Date Complete	•	Sampler OD		2.0	in.							
Drill Foreman	Z. Vaughan	-	J. Bu		_			oors				
	_							Уар				
								zable	Sa	mpling Notes		
				Τ		(ft)	ter	Total Photoionizable Vapors (ppm)				
	SOIL CLASSIFICAT	ΓΙΟΝ	 		<u>e</u>	/ery	ndwa	Phot				
	SURFACE ELEVAT	ΓΙΟΝ	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total F (ppm)				
Dark to me	edium brown, dry, coarse	e. SAND and	0,0		1	Ш.		1.8	A hand-auger was u	sed to advance the first five		
GRAVEL (GP)			=	2	4.0		2.1	feet of the boring to	reduce the possibility of ed underground utilities.		
Plack dry	 COAL ASH		4.0					1.0	damaging unidentified underground utilities.			
Diack, dry,	COAL ASH			5 -	3			0.8				
				-	4	4.0		1.2				
				10 -	5							
Principles Princi				6	4.0		1.3					
- dark brow	n, very fine, silty fly ash	helow 13 ft		-	7			0.4				
- dark blow	in, very line, silly hy ash	T Delow 13 It		15 -	8	4.0		1.1				
				=	9			1.8				
				-	10	4.0		0.5				
				20 -	11			0.6	The soil samples collected from the 0-2 ft and	lected from the 0-2 ft and		
				12	4.0		0.1	38-40 ft intervals were submitted for laboratory analysis.	re submitted for laboratory			
				-	13			1.3	aa.ye.e.			
				25 -		4.0		2.1				
				-	14	4.0		1.4				
				30 -	15							
					16	4.0		1.0				
				-	17		•	0.7				
- wet with g	gravel below 34 ft		36.0	35 -	18	4.0	=	0.5				
Gray/brow	n, dry, CLAY (CL)		00.0	=	19			0.4				
- brown be	low 38 ft			=	20	4.0		1.6				
<u> </u>	Boring at 40 ft		40.0	40 -	1							
	Ç ·											
									Drillers License No.	2581		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

■ Noted on Drilling Tools **34.0** ft.

At Completion (open hole)____ -- ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump - Peristaltic Pump BP PP

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-33
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
•			

PROJECT NAME	ek Ger	eratir	ng S	tatio	n		JOB# 170EM0052	2			
PROJECT LOCATIO											
Lawrenceburg, Indiana 47025											
	DRILLING and SAMPLING INFORM	ATION						TEST DATA			
Date Started	2/5/18 Boring Method	Geop	robe	_							
Date Completed	2/5/18 Sampler OD		2.0	_ in.			(0				
Drill Foreman _	Z. Vaughan Inspector	J. Bı	ıckel	-			apors				
							ple V	Sampling Notes			
						L	oniza	Gamping Holds			
	SOIL CLASSIFICATION				Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)				
	CUDEACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	cove	puno	Total PI (ppm)				
	SURFACE ELEVATION	<u> </u>	م م	1	<u> </u>	g	우호 1.7	A based assessment to the first	- t 6:		
Brown, dry, S/	AND and GRAVEL (GP)			1 2	4.0		0.2	A hand-auger was used to advance the first feet of the boring to reduce the possibility	of		
			5 -	3	4.0		13	damaging unidentified underground utilities.	s.		
	(° ()				4.0		0.5				
Black, dry, CC		8.0	8.0	5			2.0				
	- Entering			6	4.0		1.5				
				7			1.0				
			15	8	4.0		2.1				
- gray very fin	e, silty fly ash below 17 ft			9			1.6				
gray, very iiii	c, sitty ily asii below 17 it		20	10	4.0		1.8				
			20	11			0.6	The soil samples collected from the 0-2 ft and 44-45 ft intervals were submitted for laboratory			
				12	4.0		0.2 0.4				
			25 -				0.4	analysis.	atory		
			-	14	4.0		0.8				
		30 -		16	4.0		1.7				
- light tan betw	veen 32-36 ft		-	17	- 1.0		1.1				
			35 -		4.0		1.2				
- wet with grav	vel below 36 ft			19		Ē	0.8				
		40.0		20	4.0		0.3				
Brown, dry, S	AND (SP)	- 10.0	40	21			1.1				
Brown, dry, S/	elow 42 ft		-	22	4.0		0.2				
Bottom of Bor	ing at 45 ft	45.0	45 -	23	1.0		0.4				
								Drillers License No. 2581			

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

36.0 ft. Noted on Drilling Tools

At Completion (open hole)____ --_ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump - Peristaltic Pump BP

PΡ

- Submersible Pump Page 1 of

B-34 Ports of Indiana BORING # CLIENT Former AEP Tanner's Creek Generating Station 170EM00522 JOB# PROJECT NAME

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 2/6/18 Date Started Well Material Date Completed 2/6/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.8 Gray/brown, dry, very fine, fly ash (COAL ASH) A hand-auger was used to advance the first five 1 1.5 feet of the boring to reduce the possibility of Brown, dry, SAND (SP) 1.6 2 4.0 damaging unidentified underground utilities. 0.4 3 5 1.1 4 4.0 1.4 5 10 0.5 6 4.0 0.6 7 1.3 8 4.0 15 0.7 9 1.3 10 4.0 20 2.3 11 The soil samples collected from the 0-2 ft and 36-38 ft intervals were submitted for laboratory 0.9 analysis. The duplicate 4 soil sample was collected from the 36-38 ft interval. 12 4.0 1.7 13 25 1.2 14 4.0 1.9 15 30 0.2 16 4.0 1.6 17 1.0 18 4.0 35 0.6 19 0.3 - wet with gravel below 38 ft 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 38.0 ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP

PP - Peristaltic Pump - Whale Pump

CLIENT Ports of Indiana BORING # B-36

PROJECT NAME Former AEP Tanner's Creek Generating Station JOB # 170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 2/6/18 Date Started Well Material Date Completed 2/6/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman Z. Vaughan Screen Length _____ **10** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. SURFACE ELEVATION 1.7 Black, dry, COAL ASH A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 0.9 2 4.0 0.6 3 5 1.6 4.0 10.8 5 9.0 Brown, dry, CLAY (CL) 10.0 10 37.1 Brown, dry, SANDY SILT (SM) with some clay 6 4.0 57.2 7 20.6 - wet between 14-15 ft 4.0 8 15 The soil samples collected from the 0-2 ft and 12-14 ft intervals were submitted for laboratory 4.2 9 analysis. 18.0 1.6 4.0 Dark brown, dry, very fine, silty fly ash (COAL 10 20 0.8 11 2.0 4.0 12 1.2 13 25 26.0 0.7 Brown, dry, coarse, SAND and GRAVEL (GP) 14 4.0 8.0 15 2.0 30.0 30 Bottom of Boring at 30 ft A temporary well was installed in this boring for the collection of a groundwater sample.

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 14.0 ft.

At Completion (open hole) _____ ft.

▼ After ____ hours ____ ft.

Gave Depth _____ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 2581

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-37
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT N	k Gen	eratir	ng S	atio	n		JOB #	170EM00522			
PROJECT L	LOCATION 800 AEP D										
Lawrenceburg, Indiana 47025											
	DRILLING and SAMPLING INFORMATION TEST DATA										
Date Sta	•	Boring Method _	Geop		-						
Date Cor		Sampler OD _		2.0	_ in.			δ			
Drill Fore	eman Z. Vaughan	Inspector	J. Bu	ickel	-			/аро			
								able \	Sai	mpling Notes	
						ft)	e	ioniz			
	SOIL CLASSIFICA	TION	E	_	<u>e</u>	/ery (dwat	Photo			
	SURFACE ELEVA	ΓΙΟΝ	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
Black	k, dry, COAL ASH		"	=	1			2.1	A hand-auger was u	sed to advance the first five	
				-	2	4.0		1.2	damaging unidentifie	reduce the possibility of ed underground utilities.	
	SAME SAME							0.7			
				=	4	4.0		1.6	The soil samples collected from the 0-2 ft and 38-40 ft intervals were submitted for laboratory		
					5			1.3			
				10 —	6	4.0		8.0			
				-	7			0.3			
				15 -	8	4.0		2.7			
					9		•	1.7			
- wet	below 17 ft				10	4.0		0.5			
- bro	wn, very fine, silty fly ash belo	ow 20 ft			11			0.3		lected from the 0-2 ft and	
				-	12	4.0		0.1	analysis.	re submitted for laboratory	
				25 -	13			1.1			
				=	14	4.0		0.9			
		30 -	15			8.0					
						4.0		1.7			
			34.0	-	17			2.0			
Brow	Brown, dry, CLAY (CL) with some sand		34.0	35 -	18	4.0		1.4			
				=	19			0.9			
			40.0	46	20	4.0		0.3			
Botto	om of Boring at 40 ft		.0.5	40 -							
									Drillers License No.	2581	

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools ______ ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP

- Bladder Pump - Peristaltic Pump PP

CLIENTPorts of In	BORING #	B-38										
PROJECT NAME Former AEP Tanner's Creek Generating Station									JOB#	170EM00522		
PROJECT LOCATION 800 AEP D	_											
Lawrenceburg, Indiana 47025												
DRILLING and S	TEST	DATA										
Date Started 2/6/18	Well Material			PVC	;							
Date Completed 2/6/18	Well Diamete	r		1.0	in.							
Drill Foreman Z. Vaughan	Screen Lengt	h		10	ft			pors				
Inspector J. Buckel	Slot Size			0.010	in.			e Va				
Boring Method Geoprobe	Development	Method	d	BLF	<u> </u>			zable	S	ampling Notes		
			I	T		Œ	ter	Total Photoionizable Vapors (ppm)				
SOIL CLASSIFICATI	ON	€_	_	Well Diagra		/ery	- Jdwa	Phot				
SURFACE ELEVATI	ON	Stratum Depth	Depth Scale		Sample No.	Recovery (ft)	Groundwater	Total F (ppm)				
Black, dry, COAL ASH		00 🗖			1	ш.		1.4	A hand-auger wa	as used to advance the first five		
			=		2	4.0		1.1	feet of the boring	to reduce the possibility of the trified underground utilities.		
- Managara			=			4.0		1.0	damaging unider	itilied underground utilities.		
FANANCIA HAMANIA HAMANIA HAMANIA HAMANIA			5 -		3							
					4	4.0		1.3				
					5			0.3				
tertakan tertakan tertakan tertakan tertakan			10 -		6	4.0		1.6				
***********************************			-		7			1.4				
— \$40-00000 — \$40-00000 — \$40-00000 — \$40-00000			1 -		8	4.0		1.2				
The state of the s			15 -			4.0		2.1				
— ************************************			-		9		Ē					
- wet below 18 ft			20 -		10	4.0		0.2				
- CANADARA			20 =		11			0.6	The soil samples	collected from the 0-2 ft and were submitted for laboratory		
			-		12	4.0		0.8	analysis.	were submitted for laboratory		
- dark brown/gray, silty fly ash below 23 ft			25 —		13	-		0.0				
			_ =		14	4.0		0.1				
FARRAGEA			-		15			0.7				
- marketeleder			30 -		16	4.0		0.5				

TPV - Total Photo-Ionization Vapors

Brown, dry, CLAY (CL)

Bottom of Boring at 40 ft

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

35

40

36.0

40.0

16 4.0

17

18 4.0

19

20 4.0 1.1

0.9

0.2

1.4

At Completion (open hole)____ -- ft. **--**_ ft. ▼ After -- hours

-- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer BP - Bladder Pump

A temporary well was installed in this boring for the collection of a groundwater sample.

Drillers License No. 2581

PP - Peristaltic Pump

- Whale Pump

CLIENT	Ports of Indiana	BORING #	B-39
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION _	800 AEP Drive		
_	Lawrenceburg, Indiana 47025		

ROJECT LOCATION		ourg, Indiana	47025							-
	DRILLING and SA	AMPLING INFOR	RMATIC	N						TEST DATA
Date Started Date Completed Drill Foreman Inspector Boring Method	4/17/18 4/17/18 T. Johnson J. Buckel Geoprobe	Well Material Well Diamete Screen Lengt Slot Size Development	r h	dt		_in. _ft _in. _			Total Photoionizable Vapors (ppm)	Sampling Notes
	OIL CLASSIFICATI		Stratum Depth	Depth Scale	Well Diagram	mple .	Recovery (ft)	Groundwater	Total Photoio (ppm)	
	URFACE ELEVATI	ON		S De		S S	- R	ؿٙ		
	ry, soft clay with tra	/ ce gravel (FILL)	0.3	- -		2	2.0		0.0	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities.
- dark brown b Brown, dry, CL			4.0	5 —		3			0.0	
				-		4	4.0		0.0	
- slightly moist	below 8.0 ft			=		5			0.0	
				10 —		6	4.0		0.0	
				_		7			0.1	
				15 —		8	4.0		0.0	
- black staining	g between 16-20 ft			=		9			0.1	The soil samples collected from the 0-2 ft and 28-30 ft intervals were submitted for laboratory
- sticky below	18 ft					10	4.0		0.0	analysis. The MS/MSD soil sample was collected from the 28-30 ft interval.
				20 —		11			0.4	
						12	4.0		0.5	
				25 —		13			0.6	
				- - -		14	4.0		0.0	
- gray betweer	28-30 ft		30.0	=		15			0.0	
Brown, wet, SA Gray/brown, w	AND (SP) et, CLAY (CL) with	trace sand	31.0 32.0	30 —		16	4.0	.	0.0	
Bottom of Bori				_						
										Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 30.0 ft. At Completion (open hole)____ -- ft.

--_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-40
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/17/18 Date Started Well Material Date Completed 4/17/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson Screen Length ___ **5.0** ft **0.010** in. J. Buckel Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 0.0 0.3 STONE and GRAVEL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Light brown, dry, soft clay with trace gravel (FILL) 0.0 damaging unidentified underground utilities. 2 2.0 - dark brown below 3.0 ft 4.0 0.0 3 Brown, dry, CLAY (CL) 0.0 4.0 0.0 - slightly moist below 8.0 ft 5 10 0.0 6 4.0 0.0 7 0.0 8 4.0 15 0.0 9 0.0 4.0 The soil samples collected from the 0-2 ft and - sticky below 18 ft 10 32-34 ft intervals were submitted for laboratory 20 0.1 analysis. 11 0.0 12 4.0 0.0 13 0.1 14 4.0 0.0 15 - gray below 29 ft 30 0.0 16 4.0 0.0 17 34.0 0.2 Brown, wet, SAND (SP) with trace gravel 18 2.0 35 36.0 Bottom of Boring at 36 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

Noted on Drilling Tools 34.0 ft.

□ At Completion (open hole) -- ft.
 □ After -- hours -- ft.

超 Cave Depth _____ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump

CLIENTPorts of Indiana								BORING #	B-41			
PROJECT NAME Former AEP Tanner's Creek Generating Station								JOB #	170EM00522			
PRO	PROJECT LOCATION 800 AEP Drive								-			
	-	Lawrencebui	g, Indiana	47025							-	
	1	DRILLING and SAM	PLING INFOF	RMATIC	N						TEST D)ATA
D	ate Started 4	I/17/18	Well Material									
D	ate Completed _4		Well Diamete				in.					
D	rill Foreman T		Screen Lengt				ft			pors		
In	spector		Slot Size							e Va		
В	oring Method	Geoprobe	Development	Method	d		_			izable	Sa	mpling Notes
Г						\A/-!I		(ft)	ıter	oio		
	SOI	L CLASSIFICATION	l	Ę _		Well Diagram	e Se	very	ndwa	Phot		
	SUF	RFACE ELEVATION	I	Stratum Depth	Depth Scale	Diagram	Samp No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
-//	STONE and GR		/	0.3	=		1			0.0	A hand-auger was	s used to advance the first five to reduce the possibility of
-//	Light to dark bro	wn, dry, CLAY (CL)	with some of		=		2	2.0		0.0	damaging unident	ified underground utilities.
-//					- -							
-//	- brown with no g	gravel below 4.0 ft			5 —		3			0.0		
-//					=		4	2.0		0.0		
-//					-					0.0		
-//							5			0.0		
-//					10 —		6	4.0		0.0		
-//					=					0.0		
- -//					=		7			0.0		
-//					<u> </u>		8	4.0		0.0	The soil samples	collected from the 0-2 ft and
-//					=		9			0.0	analysis.	vere submitted for laboratory
-//					-							
-//					=		10	4.0		0.0		
-//	- loamy clay bety	ween 20-23 ft			20 —		11			0.0		
-//										0.0		
- //	Brown, moist, loa			23.0	=		12	4.0		0.0		
_	Elown, moist, loc	amy, oand (or)			25 —		13			0.0		
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				25		4.4	0.0	ē	0.0		
=	- wet with some (gravel below 26 ft		28.0	_		14	2.0		0.0		
	Bottom of Boring	g at 28 ft			_							
											Drillers License N	o. 3034
_	•				Donth	to Grou		+			•	USA Hollow Stom Augors

ENV_GEOPROBE_WELL REV1 170EM00522.GPJ ATCENVGE.GDT 5/9/18

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

■ Noted on Drilling Tools 26.0 ft. ▼ After ____ hours ____ ft.

☑ Cave Depth --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger
BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-42
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION	800 AEP Drive		

Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** 4/17/18 Date Started Well Material Date Completed 4/17/18 Well Diameter Total Photoionizable Vapors Screen Length _____ ft Drill Foreman T. Johnson J. Buckel Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method____ Groundwater SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth SURFACE ELEVATION 0.0 0.3 STONE and GRAVEL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Brown, dry, CLAY (CL) damaging unidentified underground utilities. 2 2.0 0.0 3 0.0 5 0.0 4.0 4 5 0.0 10 0.0 6 4.0 7 0.0 The soil samples collected from the 0-2 ft and 18-20 ft intervals were submitted for laboratory analysis. 0.0 - loamy clay below 14 ft 8 4.0 15 0.0 - sandy clay loam below 16 ft 9 0.0 10 4.0 20 0.0 11 - wet below 20 ft 0.0 12 4.0 23.0 Brown, wet, SAND and GRAVEL (GP) 24.0 Bottom of Boring at 24 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 20.0 ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 3034

BP - Bladder Pump PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #_	B-43
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/17/18 Date Started Well Material Date Completed 4/17/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson **5.0** ft Screen Length ___ **0.010** in. J. Buckel Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.5 0.0 TOPSOIL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Brown, dry, CLAY (CL) damaging unidentified underground utilities. 2 0.0 2.0 3 0.0 0.0 4.0 5 0.0 10 0.0 6 4.0 7 0.3 - sticky below 12 ft The soil samples collected from the 0-2 ft and 18-20 ft intervals were submitted for laboratory analysis. 0.6 8 4.0 15 0.4 9 17.0 Brown, dry, LOAMY SAND (SP) 0.4 10 4.0 20 0.4 11 - wet, coarse sand and gravel below 20 ft 0.2 12 3.0 24.0 Bottom of Boring at 24 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

20.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-44
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT NAME Former AEP Tanner's Creek Generating Station								JOB# _	170EM00522			
PH	lOJ	ECT LOCATION 800 AEP D	rıve ourg, Indiana	<i>47</i> 025							-	
			<u> </u>									
		DRILLING and SA	AMPLING INFOR	RMATIC	DΝ						I E	ST DATA
		te Started 4/17/18	Well Material									
		te Completed <u>4/17/18</u>								S		
		Il Foreman T. Johnson pector J. Buckel	_							ларо		
		pector J. Buckel ring Method Geoprobe	Slot Size Development							ple \		Sampling Notes
	DU	Ting Method	Development	. IVICTION	и		-		L	oniza		, ,
		SOIL CLASSIFICATI	ON			Well	_	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
		OUDEAGE ELEVATI		Stratum Depth	Depth Scale	Diagram	mple .	cove	puno	Total PI (ppm)		
_	J. 4	SURFACE ELEVATION	ON		8 B			Be Be	ā			
_		STONE and GRAVEL Dark brown, dry, CLAY (CL)		0.3	-	1	1			0.0	feet of the bo	r was used to advance the first five ring to reduce the possibility of
_		Dark brown, dry, GLAT (GL)			_		2	2.0		0.0	damaging un	identified underground utilities.
-					-	-	-					
_		- brown below 4.0 ft			-	1	3			0.0		
_					5 -]						
_					-	1	4	4.0		0.0		
=					-]	5			0.0		
_					-	1				0.0		
_		- sticky sandy clay loam below 10	ft		10 -	1	6	4.0		0.0		
_					-]						
_					_	-	7			0.0	The soil sam	ples collected from the 0-2 ft and vals were submitted for laboratory
_					-]	8	4.0		0.0	analysis.	,
_					15 -	1	"	4.0		0.0		
_					-	1	9			0.0		
-					_							
_					-	1	10	3.0		0.0		
_	<u>///</u>	Brown, wet, fine, SAND (SP)		20.0	20 -		11		ē	0.0		
_		blown, wet, mie, erwe (er)			-	-	''					
=		- loamy sand below 22 ft			_	1	12	4.0		0.0		
_	<u> </u>		24.0	-								
		Bottom of Boring at 24 ft										
											Drillers Licen	se No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **20.0** ft.

At Completion (open hole)____ -- ft. --_ ft.

▼ After ____ hours --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump WP - Whale Pump

Page 1 of

1

CLIENT Ports of Indiana BORING # B-45

PROJECT NAME Former AEP Tanner's Creek Generating Station JOB # 170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/18/18 Date Started Well Material Date Completed 4/18/18 **1.0** in. Well Diameter Total Photoionizable Vapors Screen Length _____ Drill Foreman T. Johnson **5.0** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. SURFACE ELEVATION TOPSOIL 0.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 2.0 Brown, dry, CLAY (CL) 2 1.3 0.0 3 0.0 5 3.0 0.0 5 0.0 10 - slightly moist, sticky, sandly clay loam below 10 The soil samples collected from the 0-2 ft and 6 4.0 0.0 14-16 ft intervals were submitted for laboratory analysis. 7 0.0 0.0 8 4.0 15 16.0 Brown, wet, LOAMY SAND (SP) 9 0.1 0.0 10 4.0 20.0 20 Bottom of Boring at 20 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

● Noted on Drilling Tools ____16.0_ ft.

✓ At Completion (open hole) _____ ft.

★ After ____ hours ____ ft.

☐ Cave Depth ☐ ____ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-46
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

	111UIaiia							BONING #		
PROJECT NAME Former AEP Tanner's Creek Generating Station								JOB# 170EM00522		
PROJECT LOCATION 800 AEP										
Lawrenc	Lawrenceburg, Indiana 47025									
DRILLING and	DRILLING and SAMPLING INFORMATIONTEST DATA									
Date Started 4/18/18 Boring Method Geoprobe										
Date Completed 4/18/18	Sampler OD	_	2.0	in						
Drill Foreman T. Johnson				""			ors			
T. Comison	IIISPECIOI	0. Du	ORCI				Vарс			
							ple	Sampling Notes		
							oniza			
SOIL CLASSIFI	CATION				Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
3012 327(3011 1		# £	£ e ⊋	eld.	over	hur	면			
SURFACE ELE	VATION	Stratum Depth	Depth Scale	Sample No.	Rec	Gro	Total I (ppm)			
TOPSOIL	/	0.5	=	1			0.0	A hand-auger was used to advance the first five		
Dark brown, dry, CLAY (CL)							0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.		
				2 2	2.0		0.0			
				3			0.0			
			5 —							
				4 4	.0		0.0			
				5			0.0			
			10							
- brown below 10 ft			10	6 4	.0		0.0			
				7			0.0			
				7			0.0			
					15	8 4	.0		0.0	
			'				0.0			
- sandy clay loam below 17 ft]	9			0.0	The soil samples collected from the 0-2 ft and 26-28 ft intervals were submitted for laboratory		
Sandy clay loan below 17 it				10 2	2.9		0.0	analysis.		
		20.0	20 —							
Brown, dry, LOAMY SAND (SF	P)	00.0		11			0.0			
Brown, dry, SANDY CLAY LOA	 AM (CL)	22.0		12 2	2.9		0.0			
3/7, 57.4.2.1	(/		1							
			25 —	13			0.0			
			1 1	14 2	2.9		0.0			
		28.0	=	14 2	9	•	3.0			
Brown, wet, SANDY LOAM (SI				15		=	0.0			
43			30 —				0.0			
		32.0		16 4	.0		0.0			
Bottom of Boring at 32 ft		32.0								
								Drillers License No. 3034		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **28.0** ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-47
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/18/18 **Date Started** Well Material Date Completed 4/18/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson Screen Length ___ **5.0** ft **0.010** in. J. Buckel Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.0 TOPSOIL 1.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Dark brown, dry, CLAY (CL) damaging unidentified underground utilities. 0.0 2 2.0 0.0 3 5 0.0 brown below 6.0 ft 4 4.0 0.0 5 10 0.0 6 4.0 7 0.0 0.0 - silty clay loam below 14 ft 4.0 8 15 0.0 9 The soil samples collected from the 0-2 ft and 17.0 26-28 ft intervals were submitted for laboratory Brown, dry, LOAMY SAND (SP) analysis. 0.0 10 4.0 20.0 20 Brown, slightly moist, SILTY CLAY LOAM (CL) 0.0 11 21.5 Brown, slightly moist, SANDY LOAM (SP) 22.5 0.0 4.0 12 Brown, slightly moist, SILTY CLAY LOAM (CL) 0.0 13 25 0.0 4.0 14 28.0 0.0 Gray, wet, SAND (SP) 15 30.0 30 0.0 Gray, wet, SANDY CLAY LOAM (CL) 16 4.0 32.0 0.0 Bottom of Boring at 32 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034 0.0

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

28.0 ft. Noted on Drilling Tools At Completion (open hole)____ -- ft.

-- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP

- Bladder Pump PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-48
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

CLIENI	Forts of Indiana	als Oass		. 01-1			170EM00E99
PROJECT NAME		ek Ger	erating	Stati	on		JOB# 170EM00522
PROJECT LOCATIO	•						
	Lawrenceburg, Indiana 47	025					<u> </u>
	DRILLING and SAMPLING INFORM	ATION					TEST DATA
Date Started	4/18/18 Boring Method	Geop	robe				
	4/18/18 Sampler OD	-	2.0 i	n.			
Drill Foreman	T. Johnson Inspector		ıckel			oors	
			_			Total Photoionizable Vapors (ppm)	
						able	Sampling Notes
				_ ₌	<u>بر</u> (ioniz	
	SOIL CLASSIFICATION	_		, S	wate	hoto	
	OUDEAGE ELEVATION	Stratum Depth	Depth Scale	No. Recovery (#)	Groundwater	Total P (ppm)	
	SURFACE ELEVATION		S S S	88 8	ত		
TOPSOIL		1.0		1		0.0	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of
Brown, dry, Cl	LAY (GL)			2 1.0		0.0	damaging unidentified underground utilities.
			5 -	3		0.0	
			}	4 4.0		0.0	
			-	5		0.0	
			10 🚽	6 4.0	,	0.0	
- sandy clay lo	pam below 12 ft		=	7		0.0	
			<u> </u>	8 4.0		0.0	The soil samples collected from the 0-2 ft and
			15 —				22-24 ft intervals were submitted for laboratory
				9		0.0	analysis. The duplicate 1 soil sample was collected from the 22-24 ft interval.
				10 4.0	,	0.0	
			20				
- gray mottling	below 20 ft		-	11		0.0	
				12 4.0	,	0.0	
1/4		24.0			^		
Brown, wet, S	AND (SP)		25 —	13		0.0	
Brown wet G	IRAVEL (GP) with little sand	26.0	-	14 4.0		0.0	
1°4 5.5mm, wet, d	(Si) marittio odila	28.0					
Bottom of Bor	ing at 28 ft						
							Drillore License No. 2024
							Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 24.0 ft.

 $\bar{\nabla}$ At Completion (open hole)____ -- ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-49
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
	-	•	

LIENI	Ports of in		ole Con		· ~ C				BORING #	
ROJECT NAME _		EP Tanner's Cree	ek Ger	ieratin	ig Si	latio	<u>n</u>		JOB #	170EM00522
ROJECT LOCAT	•	burg, Indiana 47	025							
		_								
		SAMPLING INFORMA			ſ				TEST	DATA
Date Started _	4/18/18	Boring Method _			-					
Date Completed		Sampler OD _		2.0	in.			Ø		
Drill Foreman	T. Johnson	Inspector	J. Bu	ıckel	-			apor		
								ble V	Sa	mpling Notes
							_	oniza		
	SOIL CLASSIFICA	ATION	_ E _		ele	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Groui			
STONE and			1.0	=	1			0.0	A hand-auger was u	sed to advance the first five reduce the possibility of
Dark brown,	dry, CLAY (CL)] =	2	3.0		0.0	damaging unidentific	ed underground utilities.
				=						
				5 -	3			0.0		
- brown belo	ow 6.0 ft			=	4	4.0		0.0		
				-	_			0.0		
					5			0.0		
				10 —	6	4.0		0.0		
				_	7			0.0		
				=						
- sandy clay	between 14-16 ft			15 —	8	4.0		0.0		
- sandy clay	loam below 16 ft			=	9			0.0	The soil samples co	llected from the 0-2 ft and
				-	10			0.0	26-28 ft intervals we analysis.	re submitted for laboratory
					10	4.0		0.0		
				20 —	11			0.0		
				=	12	4.0		0.0		
				=				0.0		
				25 —	13			0.0		
					14	4.0		0.0		
	4 h ala 00 ft			=	1-		•	0.0		
gray and we	t below 28 ft				15			0.0		
				30 —	16	4.0		0.0		
Bottom of R	oring at 32 ft		32.0	=						
	5g at 52 it									
									Drillers License No.	3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools _______ tt.

At Completion (open hole) ____ ft. --_ ft.

▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-50
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME Former AEP Tanner's C	reek (Gener	ating S	Statio	on			JOB# 1/UEMUU522
PROJECT LOCATION 800 AEP Drive								_
Lawrenceburg, Indiana	47025	j						-
DRILLING and SAMPLING INFOR	RMATIC	N						TEST DATA
Date Started4/18/18 Well Material			PVC	_				
Date Completed 4/18/18 Well Diamete	r		1.0	_in.				
Drill Foreman T. Johnson Screen Lengt	h		5.0	_ft			pors	
Inspector J. Buckel Slot Size			0.010	_in.			e Va	
Boring Method <u>Geoprobe</u> Development	Metho	d	BLR	_			izabl	Sampling Notes
SOIL CLASSIFICATION	E		Well Diagram	<u>0</u>	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
SURFACE ELEVATION	Stratum Depth	Depth Scale		Samp No.	Recov	Grour	Total I (ppm)	
GRAVEL	0.5	=		1			0.0	A hand-auger was used to advance the first five
Dark brown, dry, CLAY (CL)		=		2	4.0		0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
		=		2	4.0		0.0	
- brown below 4.0 ft		5 —		3			0.0	
		=		4	3.0		0.0	
		-		_	0.0			
		=		5			0.0	
		10 -		6	4.0		0.0	
		=						
-		-		7			0.0	
- sandy clay loam below 14 ft		15 —		8	4.0		0.0	The soil samples collected from the 0-2 ft and
		15 -					0.0	22-24 ft intervals were submitted for laboratory analysis.
<u>-</u>	18.0	=		9			0.0	
Brown, dry, SANDY LOAM (SP) - gray below 23 ft - wet below 24 ft	10.0	=		10	4.0		0.0	
		20 -		44			0.0	
크룅		=		11			0.0	
		-		12	4.0		0.0	
gray below 23 ft - wet below 24 ft		=		13		ē	0.0	
wet below 24 it		25 —		13			0.0	
		=		14	4.0		0.0	
Bottom of Boring at 28 ft	28.0	=						A temporary well was installed in this boring for
Dottom or boring at 20 It								the collection of a groundwater sample.
								Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **24.0** ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-51
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION _	800 AEP Drive		
	Lauranachura Indiana 47025		

Lawrenceburg, indiana 47025 **TEST DATA** DRILLING and SAMPLING INFORMATION 4/18/18 Boring Method **Geoprobe** Date Started 4/18/18 **2.0** in. Date Completed Sampler OD Total Photoionizable Vapors T. Johnson J. Buckel Drill Foreman Inspector ____ Sampling Notes Groundwater Recovery SOIL CLASSIFICATION Stratum | Depth Sample No. Depth Scale (mdd) SURFACE ELEVATION 0.5 GRAVEL 0.0 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Dark brown, dry, CLAY (CL) damaging unidentified underground utilities. 0.0 2 3.0 3 0.0 5 - brown below 6.0 ft 4.0 0.0 0.0 5 10 6 4.0 The soil samples collected from the 0-2 ft and 0.0 14-16 ft intervals were submitted for laboratory analysis. 7 - sandy clay loam below 12 ft 0.0 4.0 0.0 8 15 0.0 - wet below 16 ft 9 10 4.0 0.0 20.0 20 Bottom of Boring at 20 ft Drillers License No. 3034

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater Noted on Drilling Tools 16.0 ft. At Completion (open hole) -- ft.

-- ft. ▼ After ____ hours ___ -- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer BP

- Bladder Pump PΡ - Peristaltic Pump SP - Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-52
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/18/18 Date Started Well Material Date Completed 4/18/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson **5.0** ft Screen Length ___ **0.010** in. J. Buckel Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 0.0 0.5 GRAVEL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Dark brown, dry, CLAY (CL) 0.0 damaging unidentified underground utilities. 2 3.0 0.0 3 0.0 4.0 0.0 5 10 0.0 6 4.0 0.0 7 - brown between 12-26 ft 0.0 8 4.0 15 0.0 9 0.0 4.0 The soil samples collected from the 0-2 ft and 10 30-32 ft intervals were submitted for laboratory 20 0.0 analysis. 11 0.0 12 4.0 0.0 13 0.0 gray below 26 ft 14 4.0 0.0 15 30 0.0 16 4.0 0.0 - wet silty clay loam below 32 ft 17 0.0 18 4.0 35 36.0 Bottom of Boring at 36 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools _ **32.0** ft.

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP

PP - Peristaltic Pump - Whale Pump

CLIENT	Ports of Indiana	BORING #_	B-53
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
•			

CLIENT	Ports of In	diana							BORING #	B-53
PROJECT NAME	Former AE	P Tanner's Cree	k Ger	eratir	ng S	tatio	n		JOB #	170EM00522
PROJECT LOCATIO	N 800 AEP D	rive								
	Lawrenceb	ourg, Indiana 47	025							
	DRILLING and SA	AMPLING INFORMA	ATION						TEST	DATA
Date Started	4/19/18	Boring Method _	Geon	robe						
Date Completed	4/19/18	Sampler OD	-		in.					
Drill Foreman	T. Johnson	_			_			ors		
_					_			Мар		
								zable	Sa	mpling Notes
			Т	Ι		Œ	ter	Photoionizable Vapors		
	SOIL CLASSIFICA	TION	」	_	<u>e</u>	/ery	ndwa	Phot		
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total I (ppm)		
GRAVEL			1.0		1			0.0	A hand-auger was u	sed to advance the first five
Dark brown, o	dry, CLAY (CL)			_					feet of the boring to	reduce the possibility of ed underground utilities.
				-	2	3.0		0.0	damaging amachim	od dildolground dillinoo.
- brown below	4.0 ft			5 -	3			0.0		
				=		4.0		0.0		
3				_	4	4.0		0.0		
				=	5			0.0		
				10 -	6	4.0		0.0		
				-		7.0				
				-	7			0.0		
				-	8	4.0		0.0	The soil samples co	llected from the 0-2 ft and
				15 —				0.0	24-26 ft intervals we analysis.	re submitted for laboratory
				=	9			0.0	,	
				-	10	4.0		0.0		
				20 -	11			0.0		
				-	<u> ''</u>					
				-	12	4.0		0.0		
				-	13			0.0		
				25 -			ē	0.0		
- brown with o	orange and gray mot ow 26 ft	tling, wet, sandy	27.0	=	14	4.0		0.0		
Brown, wet, S	SAND and GRAVEL	(GP)	/ 20.0	-						
Bottom of Bor	ring at 28 ft									
									Drillers License No.	3034
<u> </u>										

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **26.0** ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #_	B-54
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION ____ 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** 4/19/18 Boring Method **Geoprobe** Date Started 4/19/18 Date Completed Sampler OD Total Photoionizable Vapors T. Johnson J. Buckel Drill Foreman Inspector ____ Sampling Notes Groundwater SOIL CLASSIFICATION Recovery Stratum Depth Sample No. Depth Scale (mdd) SURFACE ELEVATION 0.0 0.5 TOPSOIL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Light brown, dry, GRAVELLY CLAY (CL) damaging unidentified underground utilities. 0.0 2 3.0 0.0 3 5 0.0 4 4.0 0.0 5 10 0.0 4.0 6 - brown clay below 12 ft 7 0.0 0.0 4.0 8 15 0.0 9 The soil samples collected from the 0-2 ft and 26-28 ft intervals were submitted for laboratory analysis. 0.0 10 4.0 0.0 11 0.0 4.0 12 0.0 13 25 0.0 4.0 14 0.0 15 - wet sandy clay loam between 28-31 ft 0.0 31.0 16 4.0 Brown, wet, SANDY LOAM (SP) 32.0 Bottom of Boring at 32 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools _ 28.0 ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 3034

- Bladder Pump BP

PP - Peristaltic Pump SP - Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-55
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA Date Started 4/19/18 Well Material PVC Date Completed 4/19/18 Well Diameter 1.0 in. Drill Foreman T. Johnson Screen Length 5.0 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION Well Diagram 9 of Well Dia
Date Started 4/19/18 Well Material PVC Date Completed 4/19/18 Well Diameter 1.0 in. Drill Foreman T. Johnson Screen Length 5.0 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION SURFACE ELEVATION Date Started 4/19/18 Well Material PVC 1.0 in. Well Diagram of the deal of the policy of th
Date Started 4/19/18 Well Material PVC Date Completed 4/19/18 Well Diameter 1.0 in. Drill Foreman T. Johnson Screen Length 5.0 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION SURFACE ELEVATION SURFACE ELEVATION Date Office of the property of the prope
Date Completed 4/19/18 Well Diameter 1.0 in. Drill Foreman T. Johnson Screen Length 5.0 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION Well Diagram of the state
Drill Foreman T. Johnson Screen Length 5.0 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION SURFACE ELEVATION SURFACE ELEVATION SURFACE ELEVATION T. Johnson Screen Length 5.0 ft O'Nondwater O'No BLR Well Diagram Power of the power of th
A final d-auger was used to advance the first
Brown, dry, GRAVELLY CLAY (CL) 2 2.0 0.0 feet of the boring to reduce the possibility of damaging unidentified underground utilities.
gray between 10-11 ft
11-12 ft - brown clay below 12 ft - 0.0
15 - 8 4.0 0.0
The soil samples collected from the 0-2 ft are 30-32 ft intervals were submitted for laborate
20
- sandy clay below 28 ft
Black, dry, SANDY LOAM (SP) with some 30.0 30 16 4.0 0.0
organic material 32.0
Brown, wet, SAND and GRAVEL (GP) 17 0.0 0.0 0.0
36.0 35 18 4.0 0.0
Bottom of Boring at 36 ft 36.0 A temporary well was installed in this boring
the collection of a groundwater sample.
Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Photo-ionization Vapors
TFV - Total Flame-lonization Vapors
PPM- Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools <u>32.0</u> ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

B-56 Ports of Indiana BORING # CLIENT 170EM00522 Former AEP Tanner's Creek Generating Station JOB# PROJECT NAME

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/19/18 **Date Started** Well Material Date Completed 4/19/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson Screen Length _____ **5.0** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method Geoprobe **Development Method** BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.0 0.5 TOPSOIL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Gray, brown, sand and limestone fragments damaging unidentified underground utilities. 0.0 (FILL) 2 2.0 0.0 3 5 0.0 2.0 0.0 5 10.0 10 0.0 Brown, dry, CLAY (CL) 3.0 - gray with some organic material between 12-14 7 0.0 0.0 4.0 8 15 0.0 9 The soil samples collected from the 0-2 ft and 26-28 ft intervals were submitted for laboratory analysis. 0.0 10 4.0 20 0.0 11 22.0 0.0 Brown, dry, SANDY CLAY (SC) 4.0 12 0.0 13 25 26.0 0.0 Brown, dry, SANDY CLAY LOAM (CL) 4.0 14 28.0 0.0 Brown, wet, LOAMY SAND (SP) 15 30 0.0 - sand below 30 ft 16 4.0 32.0 Bottom of Boring at 32 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

28.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-57
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/19/18 **Date Started** Well Material 4/19/18 **1.0** in. Date Completed Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson **5.0** ft Screen Length ___ J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method _ Geoprobe Development Method BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.5 0.0 TOPSOIL A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Brown, dry, CLAY (CL) damaging unidentified underground utilities. 2 0.0 2.0 3 0.0 0.0 4.0 5 0.0 10 0.0 6 4.0 7 0.0 The soil samples collected from the 0-2 ft and 18-20 ft intervals were submitted for laboratory analysis. 0.0 8 4.0 16.0 0.0 Brown, dry, SANDY LOAM (SP) 9 0.0 10 4.0 20.0 20 0.0 Brown, wet, SAND and GRAVEL (GP) 11 0.0 12 4.0 24.0 Bottom of Boring at 24 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

20.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

-- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-58
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
PROJECT LOCATION	800 AEP Drive		

ROJECT NAME $_$	Former AE	<u> -P Tanner's Cre</u>	<u>ek Ger</u>	eratir	ng Si	tatio	n		JOB# 1/UEMUU522			
ROJECT LOCATIO	ON <u>800 AEP D</u>	rive										
	Lawrencel	burg, Indiana 47	025						<u></u>			
	DRILLING and S	AMPLING INFORM	ATION		Г				TEST DATA			
Date Started	4/19/18	Boring Method _	Geoprobe									
Date Completed	4/19/18	Sampler OD		2.0	_ in.			"				
Drill Foreman _	T. Johnson	Inspector	J. Bu	ıckel	-			apors				
								ble V	Sampling Notes			
							L	Total Photoionizable Vapors (ppm)	Camping Hotos			
	SOIL CLASSIFICA	ATION				Recovery (ft)	Groundwater	hotoi				
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	эсоле	ounc	Total P (ppm)				
Gravelly TOP			/ 0.3	ΔŎ	ΰŽ 1	æ	Q	0.0	A hand-auger was used to advance the first five			
///	_AY (CL) with some	organics	./	-					feet of the boring to reduce the possibility of damaging unidentified underground utilities.			
				-	2	1.0		0.0	damaging amacranica andorgream attitudes.			
				_	3			0.0				
				5 —								
- brown clay v	with no organics belo	ow 6.0 ft		_	4	4.0		0.0				
				-	5	-		0.0				
				-								
				10 -	6	4.0		0.0				
				_	7			0.0	The soil samples collected from the 0-2 ft and			
				-					18-20 ft intervals were submitted for laboratory analysis. The duplicate 2 soil sample was collect			
				15 —	8	4.0		0.0	from the 18-20 ft interval.			
- sandy clay l	oam below 16 ft			-	9			0.0				
				_								
				-	10	4.0		0.0				
- gray and we	t below 20 ft			20 -	11		•	0.0				
			22.0	_								
911	SAND and GRAVEL	(GP)		_	12	4.0		0.0				
Bottom of Bo	ring at 24 ft		24.0	-								
	÷											
									B			

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 20.0 ft.

 $\bar{\nabla}$ At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

Drillers License No. 3034

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CL	JEN	IT	Ports of In	diana								BORING #	B-59		
PF	ROJ	ECT NAME	Former AE	P Tanner's C	reek (Gener	ating	Stati	on			JOB #	170EM00522		
PF	ROJ	ECT LOCATIO	N 800 AEP D	rive											
			Lawrencek	ourg, Indiana	47025										
			DRILLING and S	AMPLING INFOF	RMATIC	N						TEST	DATA		
	Da	te Started	4/19/18	Well Material	PVC										
	Da	te Completed	4/19/18	Well Diamete	r	in.									
	Dri	II Foreman _	T. Johnson	Screen Lengt	h		5.0	ft			pors				
	Ins	pector _	J. Buckel	Slot Size			0.010	_in.			e Va	_			
	Bo	ring Method _	Geoprobe	Development	Metho	d	BLR	_			izabl	S	ampling Notes		
		S	OIL CLASSIFICATI	ON	Ę _		Well Diagrar	n e	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)				
		S	SURFACE ELEVATI	ON	Stratum Depth	Depth Scale		Sample No.	Reco	Groun	Total F (ppm)				
=		\TOPSOIL			0.5	-		1			0.0	A hand-auger wa	as used to advance the first five		
Ξ		Gray, dry, GR	AVELLY CLAY (CL))		_		2	2.0		0.0	teet of the boring damaging unider	to reduce the possibility of ntified underground utilities.		
Ξ					4.0 5.0						0.0				
<u>_</u>		ASPHALT Brown, dry, C			3.0	5 -		3							
=		,,				_		4	4.0		0.0				
=						=		5			0.0				
=						10 -		6	4.0		0.0				
=		- black with so	ome organic materia	ıl between							0.0				
		11-14-1				-		7							
=						15 -		8	4.0		0.0				
=						=		9			0.0				
Ξ								10	4.0		0.0	The soil samples	s collected from the 0-2 ft and		
_						20 -		11			0.0	30-32 ft intervals analysis.	were submitted for laboratory		
=						=						,			
Ξ						-		12	4.0		0.0				
=						25 -		13			0.0				
=						=	:	14	4.0		0.0				
Ξ		- sandy clay lo	oam below 28 ft			-		15			0.0				
<u>-</u>		Janay Jay 10	20 20.017 20 10		04.5	30 -	1	:-			0.0				
- sandy clay loam below 28 ft - South Brown, dry, LOAMY SAND and GRAN - wet below 32 ft		RAVEL (GP)	31.0			16	4.0	•							
Ξ		- wet below 32		, ,				17			0.0				
=					00.0	35 -	1 =	18	4.0		0.0				
=		Bottom of Bor	ing at 36 ft		36.0	-			_			A temporary well the collection of	was installed in this boring for a groundwater sample.		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

● Noted on Drilling Tools 32.0 ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours __

--_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

Drillers License No. 3034

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-60
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PROJECT NAME	Former AE	JOB# 170EM00522							
PROJECT LOCATION									
	Lawrenceb	urg, Indiana 47	025						
	DRILLING and SA	MPLING INFORM	ATION		Г				TEST DATA
Date Started	4/20/18	Boring Method _	Geop	robe	-				
	4/20/18	Sampler OD _		2.0	_ in.			တ	
Drill Foreman	T. Johnson	Inspector	J. Bu	ckel	-			ларог	
								ple \	Sampling Notes
						(1	<u>_</u>	oniza	, ,
	SOIL CLASSIFICAT	ΓΙΟΝ			m	əry (fi	dwate	hotoi	
	SURFACE ELEVAT	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
ASPHALT ove	r fill		1.0		1	ш		0.0	A hand-auger was used to advance the first five
Dark brown, dr				=	2	2.0		0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
		5 —	3			0.0			
			4	4.0		0.0			
		=	5			0.0			
				4.0		0.5			
				=	7			0.0	
				15 —	8	4.0		0.4	
- sandy below	16 ft				9			0.2	
				=	10	4.0		0.2	
				20 -	11			0.1	The soil samples collected from the 0-2 ft and
				=	12	4.0		0.3	36-38 ft intervals were submitted for laboratory analysis.
- silty between	24-28 ft			25 —	13			0.4	
				=	14	4.0		0.5	
				=	15			0.0	
				30 -	16	4.0		0.6	
				=	17			1.0	
- sandy clay loa	am below 34 ft			35 —	18	4.0		1.4	
				_=	19			0.5	
- wet below 38	ft				20	4.0	•	0.5	
Bottom of Bori	Bottom of Boring at 40 ft								
									Drilleys License No. 2024
									Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 38.0 ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

CLIENT										BORING #	B-61
PROJECT NAME _	Former AE	P Tanner's C	reek (Gener	ating	Stati	on			JOB #	170EM00522
PROJECT LOCATION											
	Lawrenceb	urg, Indiana	47025								
	DRILLING and SA	MPLING INFOR	RMATIC	N						TEST DA	ιΤΑ
Date Started _	4/20/18	Well Material			PVC	_					
Date Completed	4/20/18	Well Diamete	r		1.0	_in.					
Drill Foreman	T. Johnson	Screen Lengt	h		5.0	_ft			pors		
Inspector	J. Buckel	Slot Size			0.010	_in.			e Va		
Boring Method _	Geoprobe	Development	Method	db	BLR	_			izable	Sam	npling Notes
	SOIL CLASSIFICATION	ON	E c	£ 0	Well Diagran	n <u>a</u>	overy (ft)	ındwater	I Photoion (r		
:	FORME FORMER AEP Tanner's Cree SECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 470 DRILLING and SAMPLING INFORMA e Started 4/20/18 Well Material e Completed 4/20/18 Well Diameter Foreman T. Johnson Screen Length Dector J. Buckel Slot Size Ing Method Geoprobe Development Met SOIL CLASSIFICATION SURFACE ELEVATION			Dept Scal		Sam No.	Reco	Grou	Tota (ppn		
- ASPHALT ov	ver fill		0.5	-		1			0.0		used to advance the first five
Dark brown,	dry, GRAVELLY CLA	Y (CL)		_		2	4 n		0.0		reduce the possibility of ed underground utilities.
-				=		_	4.0				
- sandy clay I	loam between 4-16 ft			5 —		3			0.0		
-				=		4	4.0		0.4		
_				_							
_				=		5			0.5		
_				10 -		6	4.0		0.7		
-		Mell Diameter 1.0 in. Streen Length 5.0 ft Mell Diagram O.5 Mell Diagram O.5 O.5 O.0 O									
_				-		7			0.4		
_				15 —		8	4.0		0.5		ollected from the 0-2 ft and

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

Dark brown, wet, LOAMY SAND and GRAVEL

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

(GP)

- black below 26 ft

Bottom of Boring at 28 ft

Depth to Groundwater

24.0 ft. Noted on Drilling Tools

At Completion (open hole)____ -- ft. --_ ft. ▼ After -- hours

--_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Strong sulphur odor between 26-28 ft.

Drillers License No. 3034

A temporary well was installed in this boring for the collection of a groundwater sample.

analysis.

0.3

1.0

0.9

0.7

0.4

0.8

9

10 4.0

11

12 2.0

13

14 3.0

24.0

28.0

25

- Bladder Pump BP PP - Peristaltic Pump

PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522	
CLIENT	Ports of Indiana	BORING #	B-62	

PRO	JECT NAME	Former AEI	P Tanner's Cree	ek Gen	eratir	ng S	tatio	n		JOB# 170EM00522
PRO	JECT LOCATIO	•								<u> </u>
		Lawrenceb	urg, Indiana 47	025						
		DRILLING and SA	MPLING INFORMA	ATION		ſ		ı		TEST DATA
D	ate Started	4/20/18	Boring Method _	Geop	robe	-				
	ate Completed	4/20/18	Sampler OD _		2.0	_ in.			Ø	
D	rill Foreman _	T. Johnson	Inspector	J. Bu	ckel	-			/apor	
									∖ eldi	Sampling Notes
									oniza	1 0
				0	ary (ft	lwate	hotoi			
		Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
	ASPHALT ove	SURFACE ELEVAT		to Q	വ് ഗ്	ΰŽ 1	ď	Ō	0.4	A hand-auger was used to advance the first five
	Dark brown, d	1.0	-] '			0.4	feet of the boring to reduce the possibility of damaging unidentified underground utilities.		
	Dan brown, o		-	2	3.0		0.3	damaging unidentified underground utilities.		
			-							
	Dark brown, d	4.0	-	- 3			0.0			
1	Dark blown, dry, SANDT LOAM (SI)				5 -					
					-	4	3.0		0.0	
4					_					
					-	- 5			0.1	
1					-					
	취 시				10 -	6	3.0		0.0	The soil samples collected from the 0-2 ft and 14-16 ft intervals were submitted for laboratory
-					-					analysis.
\exists	- loamy sand	below 12 ft			_	7			0.4	
]					-					
	8 9				15 –	8	4.0		0.2	
					-			•		
	- wet below 16	3 ft			-	9			0.0	
1				-						
1	- gray sand be	elow 18 ft			-	10	4.0		0.0	
1	Datters of D	ing at 00 ft		20.0	20 -		-			
	Bottom of Bor	ing at 20 ft								
										Drillers License No. 3034
	- gray sand be	elow 18 ft		_ 20.0	20 —	10	4.0		0.0	Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 16.0 ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

- Submersible Pump

B-63 Ports of Indiana BORING # CLIENT Former AEP Tanner's Creek Generating Station 170EM00522 JOB# PROJECT NAME

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/23/18 Date Started Well Material Date Completed 4/23/18 **1.0** in. Well Diameter Total Photoionizable Vapors Screen Length _____ Drill Foreman T. Johnson **5.0** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Depth Scale SURFACE ELEVATION 0.0 Dark brown/gray, dry, SAND and GRAVEL (GP) A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of 0.0 2 3.0 damaging unidentified underground utilities. 0.0 3 5 0.0 4 3.0 0.0 9.0 5 Black, dry, COAL ASH 10.0 10 0.0 6 4.0 Brown, dry, CLAY (CL) 0.0 7 0.0 8 4.0 15 0.0 9 0.0 10 4.0 20 0.0 11 The soil samples collected from the 0-2 ft and 34-36 ft intervals were submitted for laboratory 0.0 - gray, sandy clay below 22 ft 12 4.0 analysis. The MS/MSD soil sample was collected from the 34-36 ft interval. 0.0 13 25 0.0 14 4.0 0.0 15 30 0.0 16 4.0 0.0 17 0.0 - sandy clay loam below 34 ft 18 4.0 35 0.0 - wet below 36 ft 19 0.0 20 4.0 40.0 40 Bottom of Boring at 40 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 36.0 ft.

At Completion (open hole) ____ ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer - Bladder Pump BP

PP - Peristaltic Pump - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-64
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PR	OJECT NAME	Former AEP Tanner's (JOB# 170EM00522						
PR	OJECT LOCATION	800 AEP Drive							
		Lawrenceburg, Indiana	a 47025						
		DRILLING and SAMPLING INFO	DRMATION		_				TEST DATA
	Date Started 4	4/23/18 Boring Meth	nod Geop i	obe					
		4/23/18 Sampler OD	-	2.0	in.				
	Drill Foreman	T. Johnson Inspector _	J. Bu	ckel	_			pors	
								le Va	
								ıizab	Sampling Notes
					/ (ft)	/ater	Photoionizable Vapors		
		Stratum Depth	는 o	Sample No.	Recovery (ft)	Groundwater	al Pho n)		
	S	Stra	Depth Scale	San No.	Rec	Gro	Total F (ppm)		
	Dark brown, dry	, SAND and GRAVEL (GP)		Ξ	1			0.0	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of
),				2	1.0		0.0	damaging unidentified underground utilities.
	0	6.0	5 -	3			0.0		
	Black, dry, COA		=	4	2.0		0.0		
	Temperatura			10 -	5			0.0	
	MORPHONICAL CONTROL CO			=	6	2.0		0.0	
	AND			=	7			0.0	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		16.0	15 -	8	4.0		0.0	
3	Brown, dry, CLA			=	9			0.0	
3	- gray, sandy cla	ay loam below 18 ft		20 -	10	4.0		0.0	
∄				Ξ	11			0.0	
				=	12	4.0		0.0	The soil samples collected from the 0-2 ft and 40-42 ft intervals were submitted for laboratory
				25 -	13	4.0		0.0	analysis.
				=	14	4.0		0.0	
3				30 -	16	4.0		0.0	
				_	17	4.0		0.0	
				35 —	18	4.0		0.0	
				-	19			0.0	
				20	4.0		0.0		
			40 -	21			0.0		
#	Gray, wet, LOAI	42.0	=	22	2.0	•	0.0		
#	Bottom of Boring	44.0	=						
		~							
									Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

 Noted on Drilling Tools **42.0** ft.

At Completion (open hole)____ -- ft.

--_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

- Bladder Pump - Peristaltic Pump BP PP

- Submersible Pump

B-65 Ports of Indiana BORING # CLIENT 170EM00522 Former AEP Tanner's Creek Generating Station JOB# PROJECT NAME

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/23/18 **Date Started** Well Material Date Completed 4/23/18 **1.0** in. Well Diameter Total Photoionizable Vapors Drill Foreman T. Johnson Screen Length _____ **5.0** ft **0.010** in. J. Buckel Inspector Slot Size Sampling Notes Boring Method Geoprobe **Development Method** BLR € Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.0 Dark brown, dry, SAND and GRAVEL (GP) A hand-auger was used to advance the first five 1 2.0 feet of the boring to reduce the possibility of 0.0 Brown, dry, CLAY (CL) 2 2.0 damaging unidentified underground utilities. 0.0 3 5 0.0 4 4.0 0.0 - gray with brown mottling, sandy clay between 5 10 0.0 - gray coal ash seam between 10-11 ft 6 4.0 0.0 7 0.0 15 8 4.0 0.0 9 0.0 10 4.0 20 0.0 11 0.0 12 4.0 The soil samples collected from the 0-2 ft and 38-40 ft intervals were submitted for laboratory 0.0 25 13 analysis. The MS/MSD soil sample was collected from the 38-40 ft interval. 0.0 14 4.0 0.0 15 0.0 16 4.0 0.0 17 0.0 18 4.0 35 0.0 19 0.0 20 4.0 40.0 40 0.0 Gray, wet, LOAMY SAND (SP) 21 2.0 0.0 22 44.0 Bottom of Boring at 44 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools _ 40.0 ft.

At Completion (open hole)____ -- ft. -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PP - Peristaltic Pump

B-66 Ports of Indiana BORING #_ CLIENT_

PROJECT NAME Former AEP Tanner's Creek Generating Station									JOB #	170EM00522				
PR	OJI	ECT LOCATION	•										-	
			Lawrenceb	urg, Indiana	47025								-	
			DRILLING and SA	MPLING INFOF	RMATIC	N							TES	T DATA
	Dat	te Started _	4/23/18	Well Material			P	VC						
	Dat	te Completed	4/23/18	Well Diamete	r			1.0	in.					
	Dril	II Foreman _	T. Johnson	Screen Lengt	h		,	5.0	_ft			pors		
	Ins	pector _	J. Buckel	Slot Size		(0.0)10	in.			e Va		
	Bor	ring Method _	Geoprobe	Development	Method	d	В	LR	-			izabl		Sampling Notes
			SOIL CLASSIFICATION	DN	E			Well agram	Φ	ery (ft)	dwater	Total Photoionizable Vapors (ppm)		
SURFACE ELEVATION					Stratum Depth	Depth Scale	ſ		Sample No.	Recovery (ft)	Groundwater			
			dry, SAND and GRAV		0.5	Ξ			1			0.0	A hand-auger	was used to advance the first five ng to reduce the possibility of
=		Brown, dry, G	RAVELLY CLAY (CL	.)					2	3.0		0.0	damaging unic	lentified underground utilities.
=		- sandy clay b	pelow 4.0 ft			5 -			3			0.0		
=						<u> </u>			4	4.0		0.0		
=	- gray below 8.0 ft					. =			5			0.0		
- gr						10			6	4.0		0.0		
=						=			7			0.0		
=						15 —			8	4.0		0.0		
=		- brown between	een 16-18 ft			Ξ			9			0.0		
=						Ξ			10	4.0		0.0		
=						20 -			11			0.0		
=						=			12	4.0		0.0		es collected from the 0-2 ft and
=						25 -			13			0.0	38-40 ft interva	als were submitted for laboratory duplicate 3 soil sample was
=						=			14	4.0		0.0	collected from	the 38-40 ft interval.
						=			15			0.0		
=						30 -			16	4.0		0.0		
=		- sandv clav l	oam below 32 ft			=			17			0.0		
=						35 —			18	4.0		0.0		
=						=			19			0.0		
=						=			20	4.0		0.0		
=	///	Grav wet SA			40.0	40 -		\blacksquare	21		Ē	0.0		
	Gray, wet, SANDY LOAM (SP)			=	22	2.0		0.0						
Bottom of Boring at 44 ft										A temporary w	ell was installed in this boring for			
		Bottom of Bo										the collection of	of a groundwater sample.	
													Drillers Licens	e No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater

● Noted on Drilling Tools <u>40.0</u> ft.

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

1

CLIENT	Ports of Indiana	BORING #	B-67
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT NAME	Former AEP Tanner's C	reek (Gener	ating 9	Stati	on			JOB # 170EM00522
PROJECT LOCATION	800 AEP Drive				_				
	Lawrenceburg, Indiana	47025	j	-					
DR	ILLING and SAMPLING INFO	RMATIC	ON						TEST DATA
Date Started 4/2	3/18 Well Materia	Well Material PVC							
-	3/18 Well Diamete		1.0 in.						
		Screen Length			– ft			oors	
Inspector J. E	Buckel Slot Size			0.010	_ _in.			Уар	
Boring Method Ge	oprobe Developmen	t Metho	d	BLR	_			zable	Sampling Notes
		T	Stratum Depth Depth Sample No.			£	ter	Total Photoionizable Vapors (ppm)	
SOIL (CLASSIFICATION	_ ≘	_	Well Diagram	e	/ery	dwa	Phot	
SURF	ACE ELEVATION	Stratum Depth	Depth Scale		amp Jo.	Recovery (ft)	Groundwater	Total I (ppm)	
Dark brown/gray, di	ry, SAND and GRAVEL (GP)	1.0			1	ш.		0.0	A hand-auger was used to advance the first five
Black, dry, COAL A		1.0	-						feet of the boring to reduce the possibility of damaging unidentified underground utilities.
— — — — — — — — — — — — — — — — — — —			_		2	3.0		0.0	damaging undertained underground utilities.
- ************************************			-						
—			5 —		3			0.0	
—			=		4	2.0		0.0	
-		8.0	_		ľ				
Brown, dry, SANDY	CLAY (CL)	0.0	_		5			0.0	
_			10 —						
-			=		6	3.0		0.0	
- gravelly below 12	ft		_		7			0.0	The soil samples collected from the 0-2 ft and
graveny select 12			-						20-22 ft intervals were submitted for laboratory analysis.
_			15 —		8	4.0		0.0	analysis.
		16.0	-		-				
Gray, dry, GRAVEL	LY LOAMY SAND (SP)		-		9			0.0	
- black below 18 ft			-		10	4.0		0.0	
- black below 18 ft		20.0						-	
Gray, dry, GRAVEL	LY SANDY CLAY LOAM (CL)	1	20 —		11			0.0	
-			=		_		•		
- wet below 22 ft			-		12	4.0		0.0	
Bottom of Boring at	· 24 ft	24.0	-		-				A temporary well was installed in this boring for
Dottom or bonnig at									the collection of a groundwater sample.
									D. III. N. ana.
								Drillers License No. 3034	

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **22.0** ft.

At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours --_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-68
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PF	(OJ	ECT NAME	Former AEF	Former AEP Tanner's Creek Generating Station										170EM00522
PF	ROJ	ECT LOCATION	N800 AEP Dri	ive	/e									
	Lawrenceburg, Indiana 47025												-	
	DRILLING and SAMPLING INFORMATION										TES	ST DATA		
	Dat	te Started	Well Material	al PVC										
	Date Completed 4/24/18 Well Diamet				eterin.									
	Dril	I Foreman	T. Johnson	Screen Lengt	h			5.0	_ft			oors		
	Ins	pector	J. Buckel	Slot Size			0.0	010	_in.			e Val		
Boring Method _		ring Method	Geoprobe	Development	Method	db	В	LR	_			izable	Sampling Notes	
		S	OIL CLASSIFICATIO	DN				Well		ry (ft)	water	Total Photoionizable Vapors (ppm)		
			URFACE ELEVATIO		Stratum Depth	Depth Scale	ı	agram	Sample No.	Recovery (ft)	Groundwater	Total Pł (ppm)		
Ξ	}	Black and brov	wn, dry, SAND and G	iRAVEL (GP) 「	0.5	= 5,			1	-		0.0	A hand-auger	was used to advance the first five
=		Brown, dy, CL				-			2	2.0		0.0	feet of the bor	ing to reduce the possibility of dentified underground utilities.
Ξ		- grav. gravelly	clay below 4.0 ft			5 -			3			0.0	damaging unit	dentined underground utilities.
Ξ		3 - 7, 3 7	,			5 -			4	4.0		0.0		
Ξ						=			5			0.0		
Ξ						10 -			6	4.0		0.0		
=						=			7			0.0		
Ξ						15 -			8	4.0		0.0		
Ξ									9			0.0		
Ξ									10	4.0		0.0		
Ē		- sandy clay be	elow 20 ft			20 –			11			0.0		
Ξ						-			12	4.0		0.0		
						25 –			13			0.0		
Ξ						ا ا			14	4.0		0.0		les collected from the 0-2 ft and
Ξ									15			0.0	46-48 ft interv analysis.	als were submitted for laboratory
Ξ						30 -			16	4.0		0.0	,	
Ξ						=			17			0.0		
=						35 -			18	4.0		0.0		
_] =			19			0.0		
Ξ						10 =			20	4.0		0.0		
Ξ						40 -			21			0.0		
=						=			22	4.0		0.0		
		- brown with tra	ace organic matter be	elow 44 ft		45 –			23			0.0	A temporary w	vell was installed in this boring for
=									24	4.0	•	0.0	the collection	of a groundwater sample.
Ξ		- wet, sandy cl	ay loam below 48 ft			50 -		Ħ	25		-	0.0		
Ē					52.0	30 =			26	4.0		0.0		
		Bottom of Bori	ng at 52 ft										Drillers Licens	se No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Photo-ionization Vapors
TFV - Total Flame-lonization Vapors
PPM- Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 48.0 ft.

At Completion (open hole)____ -- ft. --_ ft. ▼ After ____ hours

--_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

1

CLIENT	Ports of Indiana	BORING #	B-69
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION ____ 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** 4/24/18 Boring Method **Geoprobe Date Started** 4/24/18 Date Completed Sampler OD Total Photoionizable Vapors T. Johnson J. Buckel Drill Foreman Inspector ___ Sampling Notes Groundwater SOIL CLASSIFICATION Recovery Stratum Depth Sample No. Depth Scale (mdd) SURFACE ELEVATION 0.5 0.0 Black, dry, TOPSOIL with some sand A hand-auger was used to advance the first five feet of the boring to reduce the possibility of Light brown, dry, SAND and GRAVEL (GP) damaging unidentified underground utilities. 2 3.0 0.0 0.0 3 5 0.0 3.0 4 5 0.0 10 0.0 6 4.0 11.0 Gray, dry, GRAVELLY CLAY (CL) and black/gray coal ash with some organic material 7 0.0 The soil samples collected from the 0-2 ft and 18-20 ft intervals were submitted for laboratory analysis. 0.0 8 4.0 15 0.0 9 0.0 10 4.0 20.0 20 0.0 Gray, wet, very fine, fly ash (COAL ASH) 11 0.0 12 4.0 24.0 Bottom of Boring at 24 ft Drillers License No. 3034

TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

20.0 ft. Noted on Drilling Tools _

-- ft. At Completion (open hole)____ -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP PΡ - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana	BORING #	B-70
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION ____ 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** 4/24/18 Boring Method **Geoprobe Date Started** 4/24/18 Date Completed Sampler OD Total Photoionizable Vapors T. Johnson J. Buckel Drill Foreman Inspector ___ Sampling Notes Groundwater SOIL CLASSIFICATION Recovery Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 0.0 Black and brown, dry, SAND and GRAVEL (GP) A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. 0.0 2 1.0 0.0 3 5 0.0 4 3.0 0.0 5 10 0.0 6 3.0 11.0 Gray, dry, GRAVELLY CLAY (CL) and black coal ash with some organic material 7 0.0 3.0 The soil samples collected from the 0-2 ft and 8 15 24-26 ft intervals were submitted for laboratory analysis. The duplicate 4 soil sample was collected 0.0 9 from the 24-26 ft interval. 18.0 0.0 2.0 Gray, dry, very fine, fly ash (COAL ASH) with trace 10 20 0.0 11 0.0 4.0 12 0.0 13 25 0.0 - wet, gravelly, and clayey below 26 ft 4.0 14 28.0 Bottom of Boring at 28 ft Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

26.0 ft. Noted on Drilling Tools _

-- ft. At Completion (open hole)____ -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

- Bladder Pump BP

PΡ - Peristaltic Pump SP

- Submersible Pump

CL	.IEN	IT	Ports of Ir	ndiana									BORING #	BORING #		
			Former Al		reek (Gener	atir	ng S	Statio	on			<u> </u>			
PF	ROJ	ECT LOCATION	N800 AEP [Orive												
			Lawrence	burg, Indiana 4	47025	1							_			
			DRILLING and S	SAMPLING INFOR	MATIC	N							TEST	DATA		
	Da	te Started	4/24/18	Well Material	l PVC											
			Well Diamete	r				in.								
	Dri	II Foreman	T. Johnson					5.0				oors				
	Ins	pector	J. Buckel	_ Slot Size				10	in.			Vap				
	Во	ring Method	Geoprobe	Development	Method	db	Bl	LR	_			zable	S	ampling Notes		
							Ι ,,	Vell		(#t)	ater	Total Photoionizable Vapors (ppm)				
		S(OIL CLASSIFICAT	ION	Ę c	ے ا		gram	ole	Recovery (ft)	Groundwater	Pho				
		SI	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	「	7	Sample No.	Reco	Grou	Total I (ppm)				
		\Black and gray	, dry, SAND and C	GRAVEL (GP)	0.5	-			1			0.0	A hand-auger wa	as used to advance the first five		
mdandandandandandandandandandandan		Gray, dry, SAN	NDY CLAY (CL)			-			2	3.0		0.0	damaging unider	to reduce the possibility of ntified underground utilities.		
Ξ						5 -			3			0.0				
Ξ						-			4	3.0		0.0				
=		- brown betwee	en 8-10 ft			40			5			0.0				
						10 -			6	4.0		0.0				
Ξ						-			7			0.0				
Ξ						15 -			8	4.0		0.0				
Ξ									9			0.0				
Ξ						:			10	4.0		0.0				
=						20 -			11			0.0				
=						-			12	4.0		0.0				
Ξ						25 -			13			0.0	The soil samples	s collected from the 0-2 ft and		
=						-			14	4.0		0.0	42-44 ft intervals	were submitted for laboratory		
		- brown betwee	en 28-30 ft			-			15			0.0	collected from th	S/MSD soil sample was e 42-44 ft interval.		
=		5.5	0 00			30 -			16	4.0		0.3				
_]			17	4.0		0.0				
Ξ						35 -			18	4.0		0.0				
Ξ		brown with tro	ace coal between 3	06 40 ft		35 -				4.0		0.0				
=		- Drown with tra	ace coar between .	30-40 II		-			19	4.0		0.2				
Ξ						40 -		\exists	20	4.0		0.2				
Ξ								\exists	21	4.0		0.5				
Ξ					44.0				22	4.0	•	0.0				
dentenhedentenhe		Brown, wet, LC	DAMY SAND (SP)			45 –			23			0.0				
Ξ		.			48.0	-		= 1	24	4.0		0.0				
		Bottom of Bori	ng at 48 tt											I was installed in this boring for		

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools <u>44.0</u> ft.

At Completion (open hole)____ -- ft. --_ ft.

▼ After ____ hours __ --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

Drillers License No. 3034

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

WP - Whale Pump

CLIENT	Ports of Indiana	BORING #	B-72
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
		·	

PROJECT NAME Fori	_ JOB#	170EM00522									
PROJECT LOCATION 800	AEP Drive								_		
Law	renceburg, Indiana	47025	<u> </u>						-		
DRILLIN	DRILLING and SAMPLING INFORMATION										
Date Started 4/24/18	Well Material		PVC_								
Date Completed 4/24/18	Well Diamete	Well Diameterin.									
Drill Foreman	son Screen Leng	Screen Lengthft Slot Size0.010 in.						pors			
Inspector J. Buck	el Slot Size							e Va			
Boring MethodGeopro	be Development	Metho	d	BLR	_			Total Photoionizable Vapors (ppm)		Sampling Notes	
			1	T		(tt)	ter	oioni			
SOIL CLASS	SIFICATION	E		Well Diagram	<u>e</u>	Recovery (ft)	Groundwater	Phot			
SURFACE E	ELEVATION	Stratum Depth	Depth Scale		Sample No.	ecov	rour	Total I (ppm)			
		ŠΩ	_ O Ø		ဟ Z 1	ш	Ю	0.1	A hand augo	was used to advance the first five	
with trace organic matter	AND and GHAVEE (GF)				2	2.0		0.1	feet of the bo	ring to reduce the possibility of	
- clayey below 4.0 ft			5 -		3	2.0		0.0	damaging un	identified underground utilities.	
= o clayey below 4.5 it			5 -		4	2.0		0.0			
Brown with gray mottling,	dry, CLAY (CL)	8.0	=		5			0.0			
	a.y, 02.1. (02)		10 -		6	3.0		0.0			
=			-		7			0.0			
=			15 -		8	4.0		0.0		oles collected from the 0-2 ft and vals were submitted for laboratory	
					9			0.0	analysis.	rais were submitted for laboratory	
=			=		10	4.0		0.0			
			20 –		11			0.0			
			=		12	4.0		0.0			
- sandy between 24-28 ft			25		13			0.0			
- gray between 24-36 ft] =		14	4.0		0.0			
Black/brown/gray, dry, SA with trace organic matter - clayey below 4.0 ft Brown with gray mottling, - sandy between 24-28 ft - gray between 24-36 ft - dark gray mottling below			00		15			0.0			
=			30 -		16	4.0		0.0			
- dark gray mottling below	v 32 ft				17			0.0			
= //			35 -		18	4.0		0.0			
- brown sandy silty clay b	elow 36 ft		=		19			0.0			
=			40 -		20	4.0		0.0			
- not silty below 36 ft - not silty below 36 ft Brown, wet, LOAMY SAN					21			0.0			
			=		22	4.0		0.0			
			45 -		23			0.0			
		48.0	-		24	4.0	•	0.0			
Brown, wet, LOAMY SAN	ID (SP)		50 -		25	0.0		0.0	A 4-	and and break the state of the	
		52.0	=		26	2.0		0.0	the collection	well was installed in this boring for of a groundwater sample.	
Bottom of Boring at 52 ft									Drillers Licens		

TPV - Total Photo-Ionization Vapors

TFV - Total Photo-ionization Vapors
TFV - Total Flame-lonization Vapors
PPM- Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools **48.0** ft.

At Completion (open hole)_ -- ft. --_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

1

CLIENT	Ports of Indiana	BORING #_	B-73
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

ΡI	ROJI	ECT NAME	P Tanner's Cree	k Gen	eratin	ıg S	tatio	n		JOB# _	170EM00522	
ΡI	ROJI	ECT LOCATION										
			Lawrenceb	urg, Indiana 470)25							
			DRILLING and SA	MPLING INFORMA	TION		ſ				TE	EST DATA
	Date Started 4/24/18 Boring Method					robe						
	Dat		4/24/18	Sampler OD _				ω				
	Drill Foreman		T. Johnson	Inspector	J. Buckel					apor		
										ole V		Sampling Notes
										oniza		Campung Notes
		S	OIL CLASSIFICAT	TION				Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
					Stratum Depth	Depth Scale	Sample No.	cove	punc	Total Pł (ppm)		
_			SURFACE ELEVAT		S S	လို ငြ	Sa	Be Be	উ	0.0		
Ξ	S O	Black/brown/gra	ay, dry, SAND and	GRAVEL			1				feet of the boring	as used to advance the first five g to reduce the possibility of
Ξ	00						2	2.0		0.0	damaging unider	ntified underground utilities.
=						5 -	3			0.0		
Ξ	000				8.0		4	2.0		0.0		
Ξ	Gray with slight brown mottling, dry, CLAY (CL)				1		5			0.0		
=						10 -	6	4.0		0.0		
Ξ						=	7			0.0		
Ξ						15 —	8	4.0		0.0		
Ξ		- no brown mott	ling and sandy belo	ow 16 ft			9			0.0		
=			3 ,			=	10	4.0		0.0		
Ξ						20 -	11	1.0		0.0	The soil camples	s collected from the 0-2 ft and
Ξ						Ξ		4.0		0.0	34-36 ft intervals	were submitted for laboratory
Ξ							12	4.0		0.0	analysis.	
Ξ						25 -	13			0.0		
Ξ							14	4.0				
Ξ						30 -	15			0.0		
Ξ						=	16	4.0		0.0		
Ξ		- candy clay loa	m between 33-35 f	t			17			0.0		
=		- Sariuy Clay IOa	iii between 33-33 i	ι	36.0	35 —	18	4.0		0.0		
Ξ		Brown, wet, LO	AMY SAND (SP)		1 33.0	_=	19		▣	0.0		
Ξ					40.5		= 20			0.0		
Bottom of Boring at 40 ft			40.0	40 —								
		·	=									
											Drillers License I	No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools <u>**36.0**</u> ft.

At Completion (open hole)____ --_ ft.

--_ ft. ▼ After ____ hours

--_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

BORING # **B-74** Ports of Indiana CLIENT JOB# Former AEP Tanner's Creek Generating Station 170EM00522 PROJECT NAME

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** PVC 4/25/18 Date Started Well Material Date Completed 4/25/18 **1.0** in. Well Diameter Total Photoionizable Vapors T. Johnson Drill Foreman Screen Length _____ **5.0** ft J. Buckel **0.010** in. Inspector Slot Size Sampling Notes Boring Method __ Geoprobe Development Method BLR Groundwater Well SOIL CLASSIFICATION Recovery Diagram Sample No. Stratum Depth Depth Scale SURFACE ELEVATION 0.0 0.5 Black, dry, TOPSOIL and sand A hand-auger was used to advance the first five 1 feet of the boring to reduce the possibility of Gray, dry, SAND and GRAVEL (GP) 0.0 2 3.0 damaging unidentified underground utilities. - black between 3-4 ft 0.0 - brown below 4 ft 3 5 000 0.0 2.0 4 8.0 0.0 Gray with slight brown mottling, dry, SANDY 5 CLÁY (CL) 10 0.0 6 4.0 0.0 7 0.0 8 4.0 15 0.0 9 0.0 10 4.0 20 0.0 11 The soil samples collected from the 0-2 ft and 34-36 ft intervals were submitted for laboratory 0.0 12 4.0 analysis. 0.0 13 25 0.0 - trace gravel between 26-28 ft 14 4.0 0.0 15 30 0.0 16 4.0 0.0 17 0.0 18 4.0 35 36.0 A temporary well was installed in this boring for 0.0 Gray, wet, LOAMY SAND (SP) 19 the collection of a groundwater sample. 0.0 - brown below 38 ft 20 4.0 40.0 40 Bottom of Boring at 40 ft Drillers License No. 3034

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 36.0 ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

-- ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-75
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA 4/25/18 Boring Method **Geoprobe** Date Started 4/25/18 Sampler OD Date Completed Total Photoionizable Vapors T. Johnson J. Buckel Drill Foreman Inspector ____ Sampling Notes Groundwater Recovery (SOIL CLASSIFICATION Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION Black and gray, dry, SAND and GRAVEL (GP) A hand-auger was used to advance the first five 0.0 feet of the boring to reduce the possibility of damaging unidentified underground utilities. 2 3.0 0.0 - brown and clayey below 4 ft 3 0.0 5 2.0 0.0 8.0 Gray, moist, GRAVELLY CLAY (CL) The soil samples collected from the 0-2 ft and 5 0.0 10-12 ft intervals were submitted for laboratory analysis. 10 2.0 0.0 7 - wet sandy clay and black coal ash below 12 ft 0.0 2.0 0.0 15 16.0 Bottom of Boring at 16 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 12.0 ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

--_ ft.

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP

Drillers License No. 3034

- Bladder Pump PΡ - Peristaltic Pump

SP - Submersible Pump

Page 1 of

CL	IENT	Ports of Inc	liana						BORING #	B-76
PR	OJECT NAME_	Former AEI	P Tanner's Cree	ek Ger	nerating S	tatio	on		JOB #	170EM00522
PR	OJECT LOCATIO	N 800 AEP Dr	ive							
		Lawrenceb	urg, Indiana 47	025						
		DRILLING and SA	MPLING INFORMA	TION					TEST	DATA
	Date Started	6/18/18	Boring Method _	Geon	robe					
	Date Completed		Sampler OD	_	2.0 in.					
	Drill Foreman		_					ors		
	_							Vap		
								zable	San	npling Notes
ſſ				T	<u> </u>	₽ E	er	oioniz		
		SOIL CLASSIFICAT	ION	٦	Φ	ery (dwat	Phote		
		SURFACE ELEVAT	ION	Stratum Depth	Depth Scale Sample	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
1	Grass over T			0.3	≣ 1			0.0	A hand-auger was us	sed to advance the first five educe the possibility of
1	Brown, dry, C	LAY (CL)			2	4.0		0.0	damaging unidentifie	d underground utilities.
#					5 = 3			0.0		
非					= 4	4.0		0.0		
3					10 = 5			0.0		
					6	4.0		0.0		
#					7	4.0		0.0		
非				16.5	15 = 8	4.0		0.0		
1	///រ – – – – – –	AND (SP) with little g	ravel	17.0	10	4.0		0.0		
非	Brown, dry, C	LAT (CL)			20 = 10	7.0		0.0		
#					1 —	4.0		0.0		
非					25 - 13	1		0.0		
ఓ					14	4.0		0.0	The soil samples coll 48-50 ft intervals wer	ected from the 0-2 ft and e submitted for laboratory
非					15	1		0.0	analysis.	,
II.					30 = 16	4.0		0.0		
#	- dark brown	hetween 33-35 ft			17]		0.0		
非	- dark blowli	between 33-35 ft			3518	4.0		0.0		
非					19			0.0		
븵					40 = 20	4.0		0.0		
ఓ					= 21			0.0		
1					22	4.0		0.0		
非					45 = 23	1.		0.0		
非					= 24	4.0		0.0		
非	Bottom of Bo	ring at 50 ft		50.0	50 = 25	2.0				
	טטונטווו טו טט	inig at 50 it								
									Drillers License No. 2	2581
_				D-	nth to Groun	4				

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

ENV_GEOPROBE_STANDARD REV1 170EM00522.GPJ ATCENVGE.GDT 7/10/18

Depth to Groundwater

Noted on Drilling Tools -- ft.

--_ ft. At Completion (open hole)____ ▼ After ____ hours __ --_ ft.

☑ Cave Depth --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

BP - Bladder Pump
PP - Peristaltic Pump
SP - Submersible Pump

CI	LIENT_	Ports of Ir	ndiana								BORING #_	B-77
	ROJECT NAME		EP Tanner's C	reek (
	ROJECT LOCATIO											
		-	burg, Indiana	47025							-	
			SAMPLING INFOR								TEST	DATA
	Date Started	6/18/18	Well Material			PVO	;					
	Date Completed		- _ Well Diamete									
	Drill Foreman _	Z. Vaughan) _ft			pors		
	Inspector _	J. Buckel	Slot Size			0.01) _in.			e \a		
	Boring Method _	Geoprobe	Development	Metho	d	BLF	<u> </u>			izable	S	ampling Notes
	S	OIL CLASSIFICAT	TION			Wel	l am	ry (ft)	water	Total Photoionizable Vapors (ppm)		
	S	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	- Indign	Sample No.	Recovery (ft)	Groundwater	Total P (ppm)		
Ξ	Grass over TO	OPSOIL	1	0.3	=		1			0.0	A hand-auger wa	s used to advance the first five
=	Brown, dry, Cl	LAY (CL)			-		2	4.0		0.0	feet of the boring damaging unider	to reduce the possibility of tified underground utilities.
Ξ					5 -		3			0.0		o
Ξ							4	4.0		0.0		
Ξ					=		5			0.0		
=					10 -		6	4.0		0.0		
Ξ							7	1.0		0.0		
Ξ					1.5		8	4.0		0.0		
Ξ					15 –			4.0		0.0		
Ξ					-		9			0.0		
	- with some sa	and between 19-20	ft		20 -		10	4.0		0.0		
Ξ							11			0.0		
=							12	4.0		0.0	The soil samples	collected from the 0-2 ft and were submitted for laboratory
Ξ					25 –		13	4.0		0.0	analysis.	,
Ξ					-		15	4.0		0.0		
=					30 -		16	4.0		0.0		
							17	4.0		0.0		
Ξ	- dark brown b	etween 33-35 ft		35.0	0.5		18	4.0	Ţ	0.0		
		ILTY SAND (SM) w	vith little gravel /	36.0	35 –		·	4.0	-	0.0		
	Brown, dry, Cl	LAY (CL)			-		19	4.0		0.0		
Ξ					40 -		20	4.0		0.0		
=							21			0.0		
				45.0	=		22	4.0				
=	Bottom of Bor	ing at 45 ft		45.0	45 –	Ţ. `. 	23_	1.0		0.0	A temporary well	was installed for the collection sample.

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 35.0 ft.

At Completion (open hole) 33.8 ft. ▼ After ____ hours ____ ft.

☑ Cave Depth --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

Drillers License No. 2581

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-78
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522

PRO	JECT NAME	Former AE	P Tanner's Cree	ek Ger	neratii	ng S	tatio	on		JOB# 170EM00522
PRO	IECT LOCATIO									
		Lawrenceb	ourg, Indiana 47	025						
		DRILLING and SA	AMPLING INFORMA	TION		ſ		1		TEST DATA
Da	ite Started	6/18/18	Boring Method _	Geop	robe	.				
		6/18/18	Sampler OD _		2.0	_ in.			σ	
Dr	ill Foreman _	Z. Vaughan	Inspector	J. Bu	ckel	-			apor	
									l ple √	Sampling Notes
								<u>_</u>	oniza	i ü
		SOIL CLASSIFICA	TION	_		a)	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
		SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	900	rounc	Total F (ppm)	
7//	TOPSOIL/GR			0.3	۵ ۵	ທ Z 1	~	Ö	0.0	A hand-auger was used to advance the first five
	Brown, dry, Cl				=	2	4.0		0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.
					5 -	3			0.0	damaging unidentified underground utilities.
3//					=	4	4.0		0.0	
					10 -	5			0.0	
						6	4.0		0.0	
						7			0.0	
					15 -	8	4.0		0.0	
	- with little sar	nd between 17-18 ft				10	4.0		0.0	
					20 -	11	0		0.0	
3//					=	12	4.0		0.0	
3//					25 -	13			0.0	The soil samples collected from the 0-2 ft and
3//						14	4.0		0.0	48-50 ft intervals were submitted for laboratory analysis.
3//					30 -	15			0.0 0.0	analysis.
#//] =	16 17	4.0		0.0	
3//	- dark brown b	etween 33-35 ft			35 —	1	4.0		0.0	
						19			0.0	
						20	4.0		0.0	
					40	21			0.0	
						22	4.0		0.0	
1//					45				0.0	
1//						24	4.0		0.0	
3//	Bottom of Bor	ing at 50 ft		50.0	50 -	25	2.0			
	Dottom of Bot	ing at 50 it								
										Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools

Ā At Completion (open hole) --_ ft.

▼ After ____ hours --_ ft.

☑ Cave Depth --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

BP - Bladder Pump

PΡ - Peristaltic Pump

- Submersible Pump

CLIENT	Ports of Indiana								BORING #_	B-79
PROJECT NAME	Former AEP Tanne	er's Creek	Gener	ating S	Stati	on			JOB#	170EM00522
PROJECT LOCATION_									_	
_	Lawrenceburg, Inc	diana 4702	5						_	
[ORILLING and SAMPLING	INFORMATIO	ON						TES	Γ DATA
Date Started 6	/ 19/18 Well M	1aterial		PVC						
Date Completed 6		iameter			in.					
		n Length						ors		
	. Buckel Slot Si			0.010				Vap		
Boring Method	Beoprobe Develo	opment Metho	d	BLR	_			zable	;	Sampling Notes
			1			(£)	ter	ioni		
SOIL	L CLASSIFICATION	E		Well Diagram	<u>e</u>	/ery (dwat	Phot		
SUR	RFACE ELEVATION	Stratum Depth	Depth Scale	Well Diagram	Samp No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
Sand and gravel	FILL		-		1			0.0	A hand-auger w	vas used to advance the first five
			-						damaging unide	entified underground utilities.
			_		2	2.0		0.0		
-			-							
_					3			0.0		
_ -			5 -							
- with trace clay b	petween 6-10 ft		-		4	4.0		0.0		
_ _			-							
		9.0	-		5			0.0		
Brown, wet, coars	se, SAND and GRAVEL (G		-		-		•			
- with some coal	between 10-12 ft		10 -		6	4.0		0.0	The soil sample	es collected from the 0-2 ft and
-09		12.0	-						6-8 ft intervals value	were submitted for laboratory
Dark brown, dry,	CLAY (CL)	12.0	_		7			0.0		
- -			-							
- -			-		8	4.0		0.0		
_ _			15 —							
- -			-		9			0.0		
-			_							
_			-		10	4.0		0.0		
_		20.0	-							
Bottom of Boring	at 20 ft	20.0	20 —						A temporary we	ell was installed for the collection
									of a groundwate	er sample.
									Drillers License	No. 2581
TPV - Total Photo-lon	nization Vapors		Depth	to Grou	ındwa	<u>ter</u>				HSA - Hollow Stem Augers

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride
NA - Not Analyzed

● Noted on Drilling Tools ● 9.0 ft.

✓ At Completion (open hole) _____ ft. --_ ft. ▼ After ____ hours ____

☑ Cave Depth --_ ft. CFA - Continuous Flight Augers
HA - Hand Auger
BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

CLI	ΕN	Ports of Indiana								BORING #_	B-80
PR	OJ	ECT NAME Former AEP Tanner's C	reek (Gener	ating	Stati	on				170EM00522
PR	OJ	ECT LOCATION 800 AEP Drive								_	
		Lawrenceburg, Indiana	47025	5						-	
		DRILLING and SAMPLING INFOR	RMATIC	N						TEST	DATA
	Da	te Started 6/19/18 Well Material			PVC						
		te Completed 6/19/18 Well Diamete									
		Il Foreman Z. Vaughan Screen Lengt							oors		
ı	Ins				0.010				Vap		
ı	Bo	ring Method Geoprobe Development	Metho	d	BLR	_			zable	S	ampling Notes
Г							£)	ter	oioni		
		SOIL CLASSIFICATION	E		Well Diagram	<u>0</u>	ery (dwat	Phote		
		SURFACE ELEVATION	Stratum Depth	Depth Scale	Well Diagram	Samp No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
=	\otimes	Sand and gravel FILL		=		1			16.5	A hand-auger wa	as used to advance the first five
= }	\otimes	- black between 1-2 ft				2	4.0		0.0	feet of the boring damaging unide	g to reduce the possibility of ntified underground utilities.
= }	\otimes					3			0.0		•
=	\otimes			5 —		4	2.0		0.0		
= }	\otimes						2.0		0.0		
= }	\bigotimes	- with trace clay and coarse sand between 8-10 ft	10.0	10 -		5					
		Gray, dry CLAY (CL)				6	4.0		0.0		
=				=		7			0.0		
=				15 -		8	4.0		0.0		
=						9			0.0		
=						10	4.0		0.0		
=		- with trace sand between 19-20 ft		20 -		11			0.0	The soil sample	s collected from the 0-2 ft and
=		- with orange mottling between 22-25 ft		=		12	4.0		0.0	34-36 ft intervals analysis.	s were submitted for laboratory
=				-		13			0.0	,	
=		- sandy clay below 25 ft		25 -			4.0		0.0		
						,	4.0		0.0		
=				30 -		15			0.0		
						16	4.0				
=				=		17			0.0		
=				35 —		18	4.0		0.0		
=						19		•	0.0		
=		- wet with some sand between 38-40 ft	400			20	4.0		0.0		
= 2	///	Bottom of Boring at 40 ft	40.0	40 —	=:	21				A temporary wel	I was installed for the collection
										of a groundwate	r sample.
										Drillers License	No. 2581
Т	P۱	/ - Total Photo-Ionization Vapors		Depth	to Grou	ındwa	<u>ter</u>		_		HSA - Hollow Stem Augers

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride NA - Not Analyzed

● Noted on Drilling Tools <u>37.0</u> ft.

✓ At Completion (open hole) ____ ft.

▼ After ____ hours ____ ft.

☑ Cave Depth --_ ft. CFA - Continuous Flight Augers
HA - Hand Auger
BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

PROJECT LOCATION 800 AEP Drive Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION Date Started 6/19/18 Well Material PVC Date Completed 8/19/18 Well Diameter 1.0 in. Drill Foreman Z. Vaughan Screen Length 10 ft Inspector J. Buckel Stot Size 0.010 in. SOIL CLASSIFICATION BEAR SAMPLING INFORMATION BLR SOIL CLASSIFICATION BAR STAND (SP) Well Diameter 1.0 in. SURFACE ELEVATION BAR STAND (SP) 110 ft Inspector J. Buckel Stot Size 0.010 in. Well Diameter 1.0 in. SURFACE ELEVATION BAR STAND (SP) 110 ft Inspector J. Buckel Stot Size 0.010 in. SIZE SAND and gravel FILL STAND (SP) 110 ft Inspector J. Buckel Stot Size 0.010 in. SIZE SAND (SP) with some gravel 12.0 ft Inspector J. Buckel Stot Size 0.010 in. SIZE SAND (SP) with some gravel 12.0 ft Inspector J. Buckel Stot Size 0.00 ft Inspector J. Buckel Stot Size 0.00 ft Inspector J. Buckel Stot Size 0.010 in. SIZE SAND (SP) with some gravel 12.0 ft J.	CL	JEN	IT	Ports of In	diana									BORING #	B-81	
Date Started 6/19/18 Well Material PVC Date Completed 6/19/18 Well Diameter 1.0 in. Dill Foreman Z. Vaughan Screen Length 0.010 in. Inspector J. Buckel Stol Size 0.010 in. SURFACE ELEVATION Barry Fig. 2 4.0 0.0 0.0 Surface ELEVATION Brown, dry, SAND (SP) Brown, dry, SAND (SP) with some gravel Brown, dry, SAND (SP) with some gravel Gray with brown mottling, dry, CLAY (CL) 25.0 Gray, well, coarse, SAND and GRAVEL (GP) 25.0 gray with brown mottling, dry, CLAY (CL) 25.0 gray, well, coarse, SAND and GRAVEL (GP) 25.0 gray with brown mottling, dry, CLAY (CL) 25.0 gray w	PF	ROJ	ECT NAME	Former AE	P Tanner's C	reek (Gener	at	ing S	Stati	on			JOB#	170EM00522	
Date Started 6/19/18 Well Material PVC Date Completed 6/19/18 Well Diameter 1.0 in. Date Completed 6/19/18 Well	PF	ROJ	ECT LOCATIO	N 800 AEP D	rive											
Date Started 6/19/18 Well Material PVC Date Completed 6/19/18 Well Diameter Drill Foreman Z. Vaughan Screen Length 10 ft Inspector J. Buckel Slot Size 0.010 in. Boring Method Geoprobe Development Method BLR SOIL CLASSIFICATION SURFACE ELEVATION SURFACE ELEVATION SURFACE ELEVATION SURFACE ELEVATION Sond and gravel FILL - with trace red brick between 2-3 ft Brown, dry, SAND (SP) Somm, dry, SAND (SP) Somm, dry, SAND (SP) The soil samples collected from the 0-2 ft and 16-18 ft. Intervals were submitted for laboratory analysis. Gray with brown mottling, dry, CLAY (CL) Gray with brown mottling, dry, CLAY (CL) Gray, wet, coarse, SAND and GRAVEL (GP) All of the property of the property of the coarse, SAND and GRAVEL (GP) 25.0 26.0 10.0				Lawrencel	ourg, Indiana	47025	5							-		
Date Completed 6/19/18 Well Diameter 1.0 in. Drill Foreman 2. Vaughan Screen Length 10 ft on				DRILLING and SA	AMPLING INFOR	RMATIC	N							TEST	DATA	
Date Completed 6/19/18 Well Diameter 1.0 in. Drill Foreman 2. Vaughan Screen Length 10 ft on		Dat	te Started	6/19/18	Well Material			P	VC:							
Solit Classification Surface Elevation S						-				in						
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft			·										ors			
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft			_		_					_			Vар			
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft						Metho				-			able	s	ampling Notes	
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft				•	·					_	t	Ē	ioniz			
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft			S	OIL CLASSIFICATI	ON	_		Di	Well agram	m	ery (f	dwate	hoto			
Sand and gravel FILL - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft - with trace red brick between 2-3 ft				NIDEACE ELEVATI	ON	atun	pth ale		<u> </u>	ımple	SCOVE	onno	ital P om)			
Saint and graver FILE - with trace red brick between 2-3 ft - with trace red brick between 4-0 and on 0.0 - with trace red brick between 4-0 an	_	XXI			ON	<u> </u>	മ്ഗ്			S Z	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ত				
Solution	Ξ	\bowtie	Sand and grav	vel FILL			=	ı		1			0.0	feet of the boring	to reduce the possibility of	ve
10	_	\boxtimes	- with trace re	d brick between 2-3	ft		_			2	4.0		0.0	damaging unider	ntified underground utilities.	
Solution State S	_	\bowtie					=						0.0			
10	_	\bowtie					5 -			3			0.0			
Brown, dry, SAND (SP) 14.0 Gray, moist, SILTY SAND (SM) Brown, dry, SAND (SP) with some gravel 15.0 15.0 15.0 16.0 4.0 5.7 The soil samples collected from the 0-2 ft and 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. 20.0 Gray, wet, coarse, SAND and GRAVEL (GP) Gray, wet, coarse, SAND and GRAVEL (GP) 25.0 26.0 26.0 27. 10.0 4.0 5.7 The soil samples collected from the 0-2 ft and 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. Hydrocarbon odor between 20-22 ft.	=	\bowtie					=			4	4.0		0.0			
Brown, dry, SAND (SP) 14.0 Gray, moist, SILTY SAND (SM) Brown, dry, SAND (SP) with some gravel 15.0 15.0 15.0 16.0 4.0 5.7 The soil samples collected from the 0-2 ft and 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. 20.0 Gray, wet, coarse, SAND and GRAVEL (GP) Gray, wet, coarse, SAND and GRAVEL (GP) 25.0 26.0 26.0 27. 10.0 4.0 5.7 The soil samples collected from the 0-2 ft and 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. Hydrocarbon odor between 20-22 ft.	_	\bowtie					_			_			0.0			
12.0 14.0 15.0 15.0 15.0 15.0 15.0 16.1 16.5 16.1	_	\bowtie					-			Э			0.0			
Brown, dry, SAND (SP) 14.0	=	\bowtie					10 -			6	4.0		0.0			
Gray, wet, coarse, SAND and GRAVEL (GP) 14.0 15.0 16.0 17.0 18.0 18.0 18.0 18.0 19.0 19.0 15.0 16.18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. 16.0 16.18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 20-22 ft. 16.0 17.0 18.0 19.0 19.0 10.	<u>-</u>	\bowtie	Brown dry S			12.0	_			7			0.0			
Brown, dry, SAND (SP) with some gravel 15	_		Brown, dry, 3/	AND (SF)		14.0	=						0.0			
9 20 11 10 4.0 10 4.0 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 16-18 ft. 10 4.0 20 11 12 4.0 37.8 Gray with brown mottling, dry, CLAY (CL) 25.0 26.0 26.0 27 16-18 ft intervals were submitted for laboratory analysis. Hydrocarbon odor between 20-22 ft. 14.8 14.8	Ξ	\prod	~			15.0	15 —			8	4.0		5.7			
analysis. Hydrocarbon odor between 16-18 ft. 10 4.0 20 11 205 12 4.0 37.8	_		Brown, dry, S	AND (SP) with some	gravel		=			a			277	The soil samples 16-18 ft intervals	s collected from the 0-2 ft and were submitted for laborator	l y
20	_						-								or between 16-18 ft	•
Gray, wet, coarse, SAND and GRAVEL (GP) 23.0 23.0 23.0 25.0 25.0 26.0 27.0 28.0 29.0 20.0 2	_						=			10	4.0		165	,		
Gray with brown mottling, dry, CLAY (CL) Gray, wet, coarse, SAND and GRAVEL (GP) 23.0 25.0 25.0 26.0 26.0 27.0 28.0 28.0 29.0 20.0 2	_						20 —		\parallel	11			205	Hvdrocarbon odd	or between 20-22 ft.	
Gray with brown mottling, dry, CLAY (CL) Gray, wet, coarse, SAND and GRAVEL (GP) Gray, wet, coarse, SAND and GRAVEL (GP) 12 13 14.8	=						=		目.					,		
Gray, wet, coarse, SAND and GRAVEL (GP) 25.0 25 13 13	_	7//				23.0	_		\exists	12	4.0		37.8			
Gray, wet, coarse, SAND and GRAVEL (GP) 26.0 25	Ξ		Gray with brov	wn mottling, ary, CL	AY (CL)	25.0	_ =			13			14.8			
Gray, dry, SANDY CLAY (CL) 14 4.0 5.0	Ξ		Gray, wet, coa	arse, SAND and GR	AVEL (GP)	1	25 —		\exists			-				
	_		Gray, dry, SAI	NDY CLAY (CL)			_		1	14	4.0		5.0			
- 15 15 2.0	_						=			15			2.0			
30.0 30.0 2.0	Ξ					30.0	30 —				2.0					
Bottom of Boring at 30 ft A temporary well was installed for the collection of a groundwater sample.			Bottom of Bor	ing at 30 ft										A temporary well of a groundwater	l was installed for the collections ample.	on
Drillers License No. 2581														Drilloro Licence 1	No. 2591	

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools **25.0** ft.

 $\bar{\underline{\nabla}}$ At Completion (open hole) ____ ft.

--_ ft. ▼ After ____ hours __

☑ Cave Depth --_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-82
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION _	800 AEP Drive		
_	Lawrenceburg, Indiana 47025		

DRILLING and SAMPLING INFORMATION **TEST DATA** 6/19/18 Boring Method **Geoprobe Date Started** Date Completed 6/19/18 **2.0** in. Sampler OD Total Photoionizable Vapors Z. Vaughan J. Buckel Drill Foreman Inspector Sampling Notes Recovery (ft) Groundwater SOIL CLASSIFICATION Stratum Depth Sample No. Depth Scale (mdd) SURFACE ELEVATION Sand and gravel FILL 0.3 A hand-auger was used to advance the first five 0.0 1.0 feet of the boring to reduce the possibility of CONCRETE damaging unidentified underground utilities. Clay FILL 4.0 2 4.2 3 5.7 5 - sand and gravel fill between 5-6 ft 6.0 Gray, wet, coarse, SAND AND GRAVELL (GP) 4 4.0 368 7.0 Dark brown, dry, CLAY (CL) Black staining and hydrocarbon odor between 7-10 The soil samples collected from the 0-2 ft and 6-8 ft 5 210 intervals were submitted for laboratory analysis. The duplicate 1 soil sample was collected from the 0-2 ft interval. 10 4.0 30.6 7 5.7 3.0 8 2.6 15.0 15 Botom of Boring at 15 ft Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million ND - None Detected

PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

7.0_ ft. Noted on Drilling Tools __

At Completion (open hole) -- ft. --_ ft. ▼ After -- hours

☑ Cave Depth -- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

BP - Bladder Pump

PP - Peristaltic Pump - Submersible Pump

Page 1 of

CLIENT	Ports of Indiana	BORING #	B-83
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION	800 AEP Drive		

Lawrenceburg, Indiana 47025 **DRILLING and SAMPLING INFORMATION**

TEST DATA

D D Ir	ate Started ate Completed rill Foreman _ sspector _ oring Method _ S	6/19/18 6/19/18 Z. Vaughan J. Buckel Geoprobe	Well Material Well Diamete Screen Lengtl Slot Size Development	r	d(1.0 10 0.010 BLR Well Diagrar	 _ft in. 	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	Sampling Notes
-×	A	SURFACE ELEVATION		Stra	Depth Scale			Rec	Gro	Total F (ppm)	A bound or construction of the Control
	- with coal ash	vel FILL with trace con between 2-3 ft		12.0	10		1 2 3 4 5 6 7 8 9 10	2.04.04.04.0		34.6 42.4 0.0 1192 725 5.8 3.3 0.4 3.7 3.5	A hand-auger was used to advance the first five feet of the boring to reduce the possibility of damaging unidentified underground utilities. The soil samples collected from the 0-2 ft and
	- wet below 30			40.0	25 — 30 — 35 — 40 —		12 13 14 15 16 17 18 19 20 21	4.0 4.0 4.0 4.0	Ā	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8-10 ft intervals were submitted for laboratory analysis. A temporary well was installed for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

● Noted on Drilling Tools 30.0 ft.

At Completion (open hole) 31.1 ft.

▼ After -- hours -- ft.

☑ Cave Depth -- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

BLR - Bailer

BP - Bladder Pump PP - Peristaltic Pump

WP - Whale Pump

Page 1 of

	000 AED D :		
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522
CLIENT	Ports of Indiana	BORING #	B-84

CLIENI	T OILS OF ITILIZATION		BORING#									
PROJECT NAME			JOB# 170EM00522									
PROJECT LOCATIO								<u> </u>				
	Lawrenceburg, Indiana 47	025										
	DRILLING and SAMPLING INFORMA	ATION		ſī				TEST DATA				
Date Started	6/20/18 Boring Method	Geop	robe									
Date Completed	6/20/18 Sampler OD		2.0	in.								
Drill Foreman	Z. Vaughan Inspector	J. Bu	ckel				pors					
							e Va					
							ıizab	Sampling Notes				
		Τ			Œ	ater	Total Photoionizable Vapors (ppm)					
	SOIL CLASSIFICATION	E E	د م	ble	Recovery (ft)	Groundwater	Pho (c					
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total F (ppm)					
Sand and grav	vel FILL		=	1			0.0	A hand-auger was used to advance the first five				
				_	4.0		0.0	feet of the boring to reduce the possibility of damaging unidentified underground utilities.				
$\exists \boxtimes$				2	4.0		0.0					
			5 —	3			0.0					
]	4	4.0		0.0					
$\exists \bigotimes$				_	7.0							
				5			0.0					
$\exists \bigotimes$			10 -	6	4.0		0.0					
]				0.0					
Gray, dry, SAI	 ND (SP)	13.0		7			0.0					
3, a, y, a, y, a, y,	15 (61)		15 —	8	4.0		0.0					
							0.0	The soil samples collected from the 0-2 ft and 26-28 ft intervals were submitted for laboratory				
48				9			0.0	analysis.				
和額]	10	4.0		0.0					
- 레이			20 -	11			0.0					
		22.0										
Black, dry, CC	OAL ASH			12	4.0		0.0					
			25 —	13			0.0					
-			25 -		4.0		0.0					
			=	14	4.0		0.0					
- wet below 28	3 ft			15		•	0.0					
Bottom of Bor	ing at 30 ft	30.0	30 -		2.0							
Bottom of Bor	ing at Julit											
								Drillers License No. 2581				
								Drillers License No. 2581				

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors PPM- Parts Per Million

ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools **28.0** ft.

Ā

At Completion (open hole) ____ ft. --_ ft. ▼ After ____ hours

☑ Cave Depth --_ ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

HA - Hand Auger BLR - Bailer

BP - Bladder Pump
PP - Peristaltic Pump SP

- Submersible Pump

CLII	ENT	Ports of Inc	diana								BORING #_	B-85
	JECT NAME		P Tanner's C	reek (Gener	ating	Stati	on			· · · · · · · · · · · · · · · · · · ·	
PRO	DJECT LOCATION											
		Lawrenceb	urg, Indiana	47025	5							
		DRILLING and SA	AMPLING INFOR	RMATIC	N						TEST	DATA
	Date Started	6/20/18	Well Material			PVC						
		6/20/18	Well Diamete				in.					
		Z. Vaughan	Screen Lengt				- ft			oors		
I	nspector	J. Buckel	Slot Size			0.010	in.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
E	Boring Method	Geoprobe	Development	Method	db	BLR	_			zable	S	Sampling Notes
Г								Œ	ter	oioni		
	SC	OIL CLASSIFICATION	NC	Ε	_	Well Diagram	<u>e</u>	/ery	dwa	Phot		
	SI	JRFACE ELEVATION	ON	Stratum Depth	Depth Scale	Well Diagram	samp lo.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
-	Sand and grav	el FILL with concret	e and little coal	0, 0	-		1	ш.		0.0	A hand-auger wa	as used to advance the first five
-	ash				=						feet of the boring	g to reduce the possibility of ntified underground utilities.
-8					-		2	4.0		0.0		·····
					5 -		3			0.0		
-8								4.0		1.0		
_8					_		4	4.0		1.0		
-8					=		5			2.3		
-8					10 -		6	4.0		0.0		
-8	<u> </u>			12.0	-			4.0				
-/	Gray, dry, CLA	YEY SAND (SC) w	ith trace gravel		-		7			0.0		
- /					-		8	4.0		0.0		
-//					15 —					0.0		s collected from the 0-2 ft and
_/							9			0.0	analysis.	s were submitted for laboratory
-//					-		10	4.0		0.0		
-//					20 -				⊻	0.6		
- // - //					- -		11			0.0		
-//					_		12	4.0	•	0.0		
	- wet with some	e gravelo below 23	ft		-		13			0.0		
-/					25 –		13			0.0		
-//					=		14	4.0		0.0		
-V	Brown, dry, CL	 AY (CL)		28.0	=		15			0.0		
-8				30.0	30 -			2.0				
	Bottom of Bori	ng at 30 ft									A temporary well of a groundwater	I was installed for the collection r sample.

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM- Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools 23.0 ft.

At Completion (open hole) 19.6 ft.

▼ After ____ hours ____ ft.

☑ Cave Depth -- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers HA - Hand Auger

Drillers License No. 2581

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #	B-86
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB #	170EM00522
PROJECT LOCATION	800 AEP Drive		

Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION **TEST DATA** 6/20/18 Boring Method **Geoprobe Date Started** 6/20/18 **2.0** in. Date Completed Sampler OD Total Photoionizable Vapors Z. Vaughan J. Buckel Drill Foreman Inspector Sampling Notes Groundwater Recovery SOIL CLASSIFICATION Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 0.0 Sand and gravel FILL with concrete and coal ash 1 A hand-auger was used to advance the first five feet of the boring to reduce the possibility of 0.0 damaging unidentified underground utilities. 2 4.0 0.0 3 0.0 4 4.0 0.0 5 10 0.0 6 4.0 12.0 0.0 7 Black, dry, SAND (SP) and coal ash 0.0 8 4.0 15 0.0 9 The soil samples collected from the 0-2 ft and 0.0 10 4.0 24-26 ft intervals were submitted for laboratory 20.0 20 analysis. The MS/MSD soil sample was collected 0.0 Gray, dry, CLAYEY SAND (SC) with some gravel 11 from the 0-2 ft interval. 0.0 12 4.0 0.0 13 25 0.0 14 4.0 - wet below 27 ft 0.0 29.0 15 Brown, dry, CLAY (CL) 30 0.0 4.0 16 0.0 17 3.0 0.0 35.0 18 35 Bottom of Boring at 35 ft

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

Noted on Drilling Tools **27.0** ft.

At Completion (open hole) -- ft. -- ft. ▼ After -- hours

-- ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

Drillers License No. 2581

- Bladder Pump BP

PΡ - Peristaltic Pump

CLIENT	Ports of Indiana	BORING #_	B-87
PROJECT NAME	Former AEP Tanner's Creek Generating Station	JOB#	170EM00522

800 AEP Drive PROJECT LOCATION Lawrenceburg, Indiana 47025 DRILLING and SAMPLING INFORMATION TEST DATA PVC 6/20/18 **Date Started** Well Material Date Completed 6/20/18 **1.0** in. Well Diameter Total Photoionizable Vapors Z. Vaughan **10** ft **Drill Foreman** Screen Length ___ 0.010 in. J. Buckel Inspector Slot Size Sampling Notes Boring Method Geoprobe Development Method BLR € Groundwater Well Recovery SOIL CLASSIFICATION Diagram Sample No. Stratum Depth Depth Scale (mdd) SURFACE ELEVATION 0.0 A hand-auger was used to advance the first five No recovery 1 feet of the boring to reduce the possibility of 0.0 2 0.0 damaging unidentified underground utilities. 5.0 0.0 5 3 Gray, dry, SAND (SP) 0.0 4 3.0 0.0 5 10 0.0 - brown between 10-12 ft 6 4.0 0.0 0.0 8 4.0 15 16.0 0.0 Gray, dry, CLAY (CL) 9 0.0 10 4.0 20 0.0 11 0.0 12 4.0 0.0 13 25 The soil samples collected from the 5-6 ft and 0.0 14 4.0 40-42 ft intervals were submitted for laboratory 0.0 analysis. 15 30 0.0 16 4.0 0.0 17 0.0 18 4.0 35 0.0 19 - brown below 37 ft 0.0 20 4.0 ∇ 40 0.0 21 43.0 0.0 22 4.0 Gray, wet, CLAYEY SAND (SC) 0.0 23 45 0.0 - with trace gray sand between 46-47 ft 24 4.0 0.0 25 50.0 2.0 50 Bottom of Boring at 50 ft A temporary well was installed in this boring for the collection of a groundwater sample. Drillers License No. 2581

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed

Depth to Groundwater

43.0 ft. Noted on Drilling Tools

At Completion (open hole) 40.2 ft. ▼ After -- hours -- ft.

--_ ft. HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

HA - Hand Auger

BLR - Bailer

- Bladder Pump BP

PP - Peristaltic Pump - Whale Pump

CLIENT	Ports of In	diana								BORING #_	B-88
PROJECT NAME		P Tanner's C	reek	Gener	ating	Stati	on			_	
PROJECT LOCATIO											
		ourg, Indiana	47025	5						_	
	DRILLING and SA									TEST	DATA
		AMPLING INFOR	RIVIATIC							TE91	DATA
Date Started	6/20/18	Well Material			PVC	_					
Date Completed	6/20/18	Well Diamete	er						"		
Drill Foreman _	Z. Vaughan	Screen Lengt	th		10	_ft			apors		
Inspector _	J. Buckel	Slot Size		(0.010	_in.			e Va		
Boring Method _	Geoprobe	Development	Metho	d	BLR	_			Total Photoionizable Vapors (ppm)	\$	Sampling Notes
						1	£	Į.	oion		
S	OIL CLASSIFICATION	ON	٦		Well Diagran	ש ו	Recovery (ft)	Groundwater	Phot		
	SURFACE ELEVATION	ON	Stratum Depth	Depth Scale		Sample No.	900	l no.	Total F (ppm)		
			ಭ ದ	ÖÖ			ď	ō	0.0		
Sand and gra	vel FILL					1			0.0		as used to advance the first five g to reduce the possibility of
=			5.0	=		2	2.0		0.0		ntified underground utilities.
Gray, dry, SA			3.0	5 -		3			0.0		
	,			=		4	4.0				
				10 =		5			0.0		
			12.0			6	4.0		0.0		
Gray, dry, SA	ND and GRAVEL (G	P) with some		=		7			0.0		
- Clay			16.0	15 -		8	4.0		0.0		
Brown with gra	ay mottling, dry, CLA	AY (CL)		=		9			0.0		
<u>=</u>				20 =		10	4.0		0.0		
Gray, dry, SAI clay Brown with gra				20 =		11			0.0		
=				=		12	4.0		0.0		
=				25 -		13			0.0	The soil sample	s collected from the 0-2 ft and
=				=		14	4.0		0.0	40-42 ft interval	s were submitted for laboratory
=				20 =		15			0.0	analysis.	
=				30 -		16	4.0		0.0		
=				=		17			0.0		
- no gray mott Brown, wet, C				35 =		18	4.0	⊻	0.0		
<u>=</u>] =		19			0.0		
=	ling holou: 20 ft			10 =		20	4.0		0.0		
- no gray mott	ling below 39 ft			40 -		21			0.0		
			43.0	=		22	4.0	•	0.0		
Brown, wet, C	LAYEY SAND (SC)			45 -		23			0.0		
with trace gr	ay sand between 46	-48 ft		_=		24	4.0		0.0		
			50.0			25			0.0		
Bottom of Bor	ing at 50 ft		30.0	50 —		1	2.0			A temporary we	Il was installed in this boring for
	-									the collection of	a groundwater sample.
										Drillers License	No. 2581
				Depth	to Gro	ındwa	ter				HSA - Hollow Stem Augers

TPV - Total Photo-Ionization Vapors

TFV - Total Flame-Ionization Vapors

PPM - Parts Per Million
ND - None Detected
PVC - Polyvinyl Chloride NA - Not Analyzed

Noted on Drilling Tools <u>43.0</u> ft.

 $\overline{\lor}$ At Completion (open hole) 35.5 ft.

▼ After ____ hours ____ ft.

☑ Cave Depth --_ ft.

CFA - Continuous Flight Augers
HA - Hand Auger

BLR - Bailer
BP - Bladder Pump
PP - Peristaltic Pump

Appendix B – Low-Flow Groundwater Sampling L	ogs

Sampling

Event: Groundwater Sampling

Sample Date: 2/9/18

Low-Flow

Equipment:

800 AEP Drive, Lawrenceburg, Indiana Location: Sampler(s): Josh Buckel

Project No.: 170EM00522

Client:

POI - Former Tanners Creek

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-3	1"	10:45	11.20	22.67	6	165	20	120	17.67	40	5.2	6.92	0.798	-212	10.57	0.48
		10:54	11.20								5.6	6.99	0.816	-224	12.67	0.00
		10:57	11.20								5.3	7.01	0.814	-224	12.70	0.00
		11:00	11.20								5.4	7.01	0.816	-223	12.73	0.00

WD = Well Diameter DTW = Depth to Water BTW = Bottom of the Well CPM = Cycles per Minute

REMARKS:

collected MS/MSD, clear, no sheen or odor

Sample collected at: 11:00

POI - Former Tanners Creek

Project No.: 170EM00522

Client:

800 AEP Drive, Lawrenceburg, Indiana Location:

Sampler(s): Josh Buckel Sampling

Event: Groundwater Sampling

Sample Date: 2/9/18

Equipment: Low-Flow

															,	
Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-6	1"	15:35	12.21	18.88	6	165	20	120	15.55	40	46.5	7.21	0.364	-23	16.07	8.90
		15:50	12.21								20.9	7.28	0.373	-31	15.96	3.06
		16:00	12.21								10.7	7.31	0.376	-34	15.85	0.51
		16:09	12.21								5.6	7.32	0.378	-33	15.80	0.00
		16:12	12.21								5.8	7.34	0.378	-34	15.78	0.00
		16:15	12.21								5.4	7.35	0.380	-34	15.79	0.00
														·		
													·			

WD = Well Diameter BTW = Bottom of the Well

DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 16:15

Sampling

Event: Groundwater Sampling

Sample Date: 2/12/18

Equipment:

Low-Flow

Location:

Client: Project No.: POI - Former Tanners Creek

170EM00522

800 AEP Drive, Lawrenceburg, Indiana Josh Buckel Sampler(s):

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)		Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-7	1"	12:00	15.83	24.21	6	165	20	120	20.02	40	21.3	6.45	1.201	-156	15.66	2.43
		12:15	15.83								11.1	6.45	1.114	-159	15.62	0.21
		12:21	15.83								4.8	6.50	1.108	-161	15.38	0.00
		12:24	15.83								5.6	6.52	1.106	-162	15.29	0.00
		12:27	15.83								5.4	6.52	1.100	-163	15.31	0.00
		12:30	15.83								5.7	6.53	1.100	-163	15.27	0.00
													_			

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 12:30

Sampling

Event: Groundwater Sampling

Sample Date: 2/12/18

Equipment:

Low-Flow

Sampler(s):

Client: Project No.:

Location:

Josh Buckel

POI - Former Tanners Creek

800 AEP Drive, Lawrenceburg, Indiana

170EM00522

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-9	1"	12:45	22.77	28.00	6	165	20	120	25.39	50	69.7	6.22	0.575	-32	16.90	4.65
		13:15	22.77								34.0	6.14	0.567	-27	16.72	1.18
		13:35	22.77								20.0	6.12	0.563	-25	16.64	0.17
		13:50	22.77								14.7	6.11	0.561	-24	16.59	0.00
		13:54	22.77								13.8	6.11	0.560	-24	16.62	0.00
		13:57	22.77								13.7	6.10	0.562	-25	16.59	0.00
		14:00	22.77								14.2	6.10	0.561	-24	16.56	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 14:00

Sampling

Client: POI - Former Tanners Creek
Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Event: Groundwater Sampling

Sample Date: 2/12/18

Equipment: Low-Flow

														,	
WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
1"	14:20	32.71	38.54	6	165	20	120	35.63	50	265	7.48	1.04	-218	15.05	0.78
	15:00	32.73								140	7.60	1.18	-238	14.27	0.00
	15:25	32.71								60.9	7.65	1.22	-245	14.02	0.00
	15:50	32.72								25.8	7.68	1.24	-250	14.00	0.00
	15:54	32.71								23.2	7.68	1.24	-250	13.95	0.00
	15:57	32.71								25.6	7.69	1.24	-251	13.98	0.00
	16:00	32.71								24.7	7.69	1.23	-251	13.94	0.00
		1" 14:20 15:00 15:25 15:50 15:54 15:57	1" 14:20 32.71 15:00 32.73 15:25 32.71 15:50 32.72 15:54 32.71 15:57 32.71	1" 14:20 32.71 38.54 15:00 32.73 15:25 32.71 15:50 32.72 15:54 32.71 15:57 32.71	WD Time DTW (ft) BTW (ft) Setting 1" 14:20 32.71 38.54 6 15:00 32.73 32.71 32.71 32.71 15:50 32.72 32.71 32.71 32.71 15:57 32.71 32.71 32.71 32.71	WD Time DTW (ft) BTW (ft) Setting ID 1" 14:20 32.71 38.54 6 165 15:00 32.73	WD Time DTW (ft) BTW (ft) CPM Setting ID per cycle (mL) 1" 14:20 32.71 38.54 6 165 20 15:00 32.73 32.71 <td< td=""><td>WD Time DTW (ft) BTW (ft) Setting ID (mL) (mL/min) 1" 14:20 32.71 38.54 6 165 20 120 15:00 32.73 32.71 32.72 32.72 32.72</td><td>WD Time DTW (ft) BTW (ft) CPM Setting ID Setting (mL) per cycle (mL) Flow rate (mL/min) Pump depth (ft) 1" 14:20 32.71 38.54 6 165 20 120 35.63 15:00 32.73 32.71 32.71 32.72 32.71 32.72 32.72 32.72</td><td>WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (mL/min) Pump pressure 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 15:00 32.73 32.71 32.71 32.72 32.71</td><td>WD Time DTW (ft) BTW (ft) CPM Setting ID Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 15:00 32.73 32.71 32.71 60.9 15:50 32.72 25.8 15:54 32.71 23.2 15:57 32.71 25.6</td><td>WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (mL/min) Pump pressure Turbidity (NTU) PH (units) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 15:00 32.73 32.71 60.9 7.65 15:50 32.72 25.8 7.68 15:54 32.71 23.2 7.68 15:57 32.71 25.6 7.69</td><td>WD Time DTW (ft) BTW (ft) Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) PH (units) Conductivity (mS/cm) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 1.04 15:00 32.73 32.71 32.71 60.9 7.65 1.22 15:50 32.72 25.8 7.68 1.24 15:54 32.71 25.6 7.69 1.24</td><td>WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) PH (units) Conductivity (mS/cm) ORP (mv) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 1.04 -218 15:00 32.73 32.71 32.71 4 4 4 4 4 4 -238 15:50 32.72 32.71 4 4 4 4 -250 -250 -250 -250 -250 -256 7.69 1.24 -250</td><td> WD Time DTW (ft) BTW (ft) Setting ID Per cycle (mL) Flow rate (mL/min) Pump Pump Turbidity PH (units) PH (units) Conductivity (mS/cm) (mV) CD PH (units) PH</td></td<>	WD Time DTW (ft) BTW (ft) Setting ID (mL) (mL/min) 1" 14:20 32.71 38.54 6 165 20 120 15:00 32.73 32.71 32.72 32.72 32.72	WD Time DTW (ft) BTW (ft) CPM Setting ID Setting (mL) per cycle (mL) Flow rate (mL/min) Pump depth (ft) 1" 14:20 32.71 38.54 6 165 20 120 35.63 15:00 32.73 32.71 32.71 32.72 32.71 32.72 32.72 32.72	WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (mL/min) Pump pressure 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 15:00 32.73 32.71 32.71 32.72 32.71	WD Time DTW (ft) BTW (ft) CPM Setting ID Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 15:00 32.73 32.71 32.71 60.9 15:50 32.72 25.8 15:54 32.71 23.2 15:57 32.71 25.6	WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (mL/min) Pump pressure Turbidity (NTU) PH (units) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 15:00 32.73 32.71 60.9 7.65 15:50 32.72 25.8 7.68 15:54 32.71 23.2 7.68 15:57 32.71 25.6 7.69	WD Time DTW (ft) BTW (ft) Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) PH (units) Conductivity (mS/cm) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 1.04 15:00 32.73 32.71 32.71 60.9 7.65 1.22 15:50 32.72 25.8 7.68 1.24 15:54 32.71 25.6 7.69 1.24	WD Time DTW (ft) BTW (ft) Setting Setting ID per cycle (mL) Flow rate (mL/min) Pump depth (ft) Pump pressure Turbidity (NTU) PH (units) Conductivity (mS/cm) ORP (mv) 1" 14:20 32.71 38.54 6 165 20 120 35.63 50 265 7.48 1.04 -218 15:00 32.73 32.71 32.71 4 4 4 4 4 4 -238 15:50 32.72 32.71 4 4 4 4 -250 -250 -250 -250 -250 -256 7.69 1.24 -250	WD Time DTW (ft) BTW (ft) Setting ID Per cycle (mL) Flow rate (mL/min) Pump Pump Turbidity PH (units) PH (units) Conductivity (mS/cm) (mV) CD PH (units) PH

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 16:00

Sampling

Event: Groundwater Sampling

Sample Date: 2/12/18

Equipment:

Low-Flow

800 AEP Drive, Lawrenceburg, Indiana Location:

Client: Project No.:

Josh Buckel Sampler(s):

170EM00522

POI - Former Tanners Creek

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-13	1"	16:45	26.32	35.83	6	165	20	120	31.06	50	109	8.31	0.491	-175	13.97	0.00
		17:10	26.33								44.7	8.43	0.489	-260	14.06	0.00
		17:20	26.32								30.8	8.43	0.486	-270	14.27	0.00
		17:24	26.32								22.7	8.45	0.480	-275	14.25	0.00
		17:27	26.33								24.8	8.42	0.480	-277	14.30	0.00
		17:30	26.33								25.6	8.44	0.482	-277	14.32	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 17:30

POI - Former Tanners Creek

Project No.: 170EM00522

Client:

800 AEP Drive, Lawrenceburg, Indiana Location:

Sampler(s): Josh Buckel Sampling

Event: Groundwater Sampling

Sample Date: 2/13/18

Equipment: Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-14	1"	8:50	24.98	34.82	6	165	20	120	29.90	50	97.8	5.85	0.106	114	11.82	0.00
		9:30	24.98								53.9	7.02	0.102	-25	12.56	0.00
		10:00	24.98								32.6	7.58	0.102	-153	12.87	0.00
		10:11	24.98								28.0	7.70	0.102	-175	12.96	0.00
		10:14	24.98								20.6	7.75	0.101	-177	13.07	0.00
		10:17	24.98								21.1	7.77	0.102	-177	13.04	0.00
		10:20	24.98								22.0	7.78	0.101	-178	13.08	0.00
·																
•																

WD = Well Diameter BTW = Bottom of the Well

DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 10:20

Sampling

Event: Groundwater Sampling

Sample Date: 2/13/18

Equipment:

Low-Flow

Location: Sampler(s):

Project No.:

Client:

170EM00522 800 AEP Drive, Lawrenceburg, Indiana Josh Buckel

POI - Former Tanners Creek

Flow volume Throttle/ Temp DO CPM Setting per cycle Flow rate Pump depth Pump Turbidity Conductivity ORP (degrees Well ID WD Time DTW (ft) BTW (ft) Setting ID (mL/min) (ft) (NTU) pH (units) (mS/cm) Č) (mL) pressure (mv) B-15 1" 38.30 10:55 6 165 20 120 33.30 50 56.8 8.11 1.09 -155 15.90 0.48 25.46 11:20 25.47 45.1 8.20 1.10 -202 14.53 0.00 12:00 25.47 22.7 8.24 1.13 -243 13.98 0.00 12:14 25.46 19.2 8.25 1.13 -255 14.20 0.00 12:17 25.47 20.6 8.27 1.12 -258 14.25 0.00 12:20 25.47 19.5 8.25 1.13 -256 14.22 0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 12:20

POI - Former Tanners Creek

Project No.: 170EM00522

800 AEP Drive, Lawrenceburg, Indiana Location:

Sampler(s): Josh Buckel

Client:

Sampling

Event: Groundwater Sampling

Sample Date: 2/13/18

Equipment: Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-16	1"	12:45	34.20	44.31	6	165	20	120	39.31	50	320	7.15	0.793	-215	12.70	2.69
		13:30	34.20								75.2	7.14	0.855	-222	13.41	0.16
		13:54	34.20								28.7	7.12	0.906	-217	12.92	0.00
		13:57	34.20								26.4	7.11	0.908	-218	12.90	0.00
		14:00	34.20								25.6	7.11	0.908	-220	12.88	0.00
<u> </u>																

WD = Well Diameter BTW = Bottom of the Well

DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 14:00

Client: POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/13/18

Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-19	1"	14:40	32.78	38.20	6	165	20	120	35.49	50	163	7.78	0.804	-196	20.74	0.04
		15:15	32.78								82.6	7.85	1.13	-271	18.50	0.00
		15:50	32.79								34.3	7.92	1.16	-285	17.05	0.00
		16:20	32.78								17.8	7.94	1.17	-290	16.85	0.00
		16:24	32.78								15.6	7.95	1.18	-295	16.80	0.00
		16:27	32.78								16.7	7.96	1.17	-294	16.75	0.00
		16:30	32.78								16.1	7.95	1.17	-294	16.77	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 16:30

POI - Former Tanners Creek

Project No.: 170EM00522

Client:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/14/18 Low-Flow

LOW 1 10

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-21	1"	8:30	32.31	38.20	6	165	20	120	35.35	50	209	7.80	1.04	-145	17.54	9.06
		9:00	32.31								163	7.94	1.05	-241	17.04	0.46
		9;20	32.32								122	7.98	1.08	-260	15.58	0.00
		9:45	32.32								101	8.05	1.11	-276	14.83	0.00
		10:20	32.31								80.7	8.12	1.13	-280	14.90	0.00
		10:50	32.31								68.6	8.14	1.15	-285	14.82	0.00
		11:10	32.31								50.7	8.15	1.15	-288	14.75	0.00
		11:14	32.31								45.8	8.14	1.16	-288	14.81	0.00
		11:17	32.31								46.2	8.13	1.16	-289	14.76	0.00
		11:20	32.32								43.7	8.13	1.16	-289	14.78	0.00
														•		

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 11:20

POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Client:

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/14/18 Low-Flow

LOW-1 IOW

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-23	1"	13:00	26.35	39.07	6	165	20	120	34.07	50	764	6.92	0.577	55	16.26	0.00
		14:00	26.35								354	7.08	0.575	42	15.58	0.00
		14:45	26.35								47.2	7.17	0.571	20	15.62	0.00
		15:00	26.35								32.7	7.23	0.520	30	15.50	0.00
		15:20	26.35								24.2	7.30	0.510	40	15.65	0.00
		15:24	26.35								25.6	7.36	0.506	45	15.60	0.00
		15:27	26.35								24.7	7.38	0.504	47	15.55	0.00
		15:30	26.35								23.9	7.40	0.504	47	15.58	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 15:30

Client: POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Sampling

Event: Groundwater Sampling

Sample Date:

2/15/18

Equipment: Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-24	1"	8:20	25.30	39.43	6	165	20	120	34.43	50	82.4	6.83	0.722	-186	15.86	0.00
		8:50	25.30								31.7	6.83	0.717	-202	15.65	0.00
		8:54	25.30								24.9	6.85	0.714	-204	15.60	0.00
		8:57	25.30								25.6	6.85	0.714	-201	15.59	0.00
		9:00	25.30								23.9	6.85	0.713	-203	15.56	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor

Sample collected at: 9:00

POI - Former Tanners Creek

Project No.: 170EM00522

Client:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/15/18

Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-26	1"	10:40	25.45	39.43	6	165	20	120	34.43	50	91.1	7.27	0.651	-247	17.51	0.00
		11:20	25.45								60.7	7.28	0.645	-249	17.79	0.00
		11:35	25.45								38.6	7.31	0.640	-251	17.95	0.00
		11:50	25.45								20.7	7.34	0.638	-253	18.13	0.00
		11:54	25.45								22.6	7.37	0.637	-255	18.17	0.00
		11:57	25.45								21.1	7.38	0.638	-255	18.21	0.00
		12:00	25.45								20.9	7.39	0.640	-256	18.18	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor

Sample collected at: 12:00

POI - Former Tanners Creek

Project No.: 170EM00522

Client:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Sampling

Event: Groundwater Sampling

Sample Date:

2/20/18

Equipment: Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-27	1"	10:00	15.90	48.76	6	165	20	120	43.76	50	7.3	8.64	0.511	-55	16.68	2.33
		10:15	15.90								5.9	8.87	0.524	-61	16.65	0.20
		10:21	15.91								5.2	8.98	0.528	-63	16.72	0.00
		10:24	15.90								4.5	8.95	0.530	-63	16.75	0.00
		10:27	15.90								4.8	8.91	0.531	-64	16.80	0.00
		10:30	15.90								4.6	8.93	0.530	-63	16.78	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor

Sample collected at: 10:30

POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Client:

Sampling

Event: Groundwater Sampling

Sample Date:

2/20/18

Equipment: Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-34	1"	13:40	1.83	40.20	6	165	20	120	35.20	50	144	7.18	0.445	45	17.05	10.07
		14:20	1.83								78.6	7.16	0.442	-40	17.98	5.62
		15:00	1.83								49.6	7.14	0.440	-84	18.61	0.46
		15:21	1.83								33.8	7.16	0.450	-85	18.70	0.00
		15:24	1.83								24.6	7.18	0.458	-83	18.79	0.00
		15:27	1.83								24.5	7.19	0.458	-83	18.80	0.00
		15:30	1.83								24.7	7.18	0.460	-84	18.78	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor Sample collected at: 15:30

POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Client:

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/15/18

Low-Flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-36	1"	14:00	11.86	25.20	6	165	20	120	20.20	50	172	7.43	0.440	187	17.56	6.71
		14:45	11.86								91.6	6.81	0.442	170	17.01	3.24
		15:30	11.86								34.7	6.68	0.447	156	17.38	0.30
		15:51	11.87								25.6	6.71	0.448	145	17.49	0.00
		15:54	11.86								22.7	6.73	0.446	141	17.60	0.00
		15:57	11.86								22.0	6.74	0.447	141	17.63	0.00
		16:00	11.86								21.3	6.72	0.447	140	17.66	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor

Sample collected at: 16:00

POI - Former Tanners Creek

Project No.: 170EM00522

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel

Client:

Sampling

Event: Groundwater Sampling

Sample Date: Equipment:

2/19/18 Low-Flow

LOW-1 IOW

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-38	1"	13:00	16.40	35.75	6	165	20	120	30.75	50	295	7.76	0.521	-241	20.58	0.46
		13:30	16.40								187	7.95	0.525	-234	19.86	0.00
		14:00	16.41								95.5	7.98	0.523	-266	19.72	0.00
		14:30	16.40								67.6	8.08	0.526	-280	19.61	0.00
		14:51	16.40								48.2	8.04	0.524	-285	19.53	0.00
		14:54	16.41								43.7	8.01	0.524	-288	19.55	0.00
		14:57	16.40								40.7	8.02	0.525	-287	19.51	0.00
		15:00	16.40								42.6	8.02	0.525	-288	19.53	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

clear, no sheen or odor; collected DUP

Sample collected at: 15:00

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Date: April 25, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Sampler(s): John Quay

Location: 800 AEP Dr., Lawrenceburg, IN

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID		Flow rate (mL/min)	Pump depth (ft)	Pump pressure	Maximum Drawdown allowed (ft)		рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-40	1"	4/25/18	12:20	13.45	36.00	6/165	20	120	24.72	35	0	0	7.47	0.712	11.6	1.89	13.9	-153
			12:30	13.45								1200	7.47	0.711	9	0.92	13.6	-256.8
			12:33	13.45								1560	7.49	0.71	9.1	0.74	13.6	-262.2
			12:36	13.45								1920	7.50	0.709	8.9	0.66	13.6	-249.4
			12:39	13.45								2280	7.49	0.712	8.8	0.62	13.7	-262
			12:42	13.45								2640	7.49	0.712	9	0.6	13.7	-263.7

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 22.55 3-WV=

AGP= 0.75

Sample Time= 12:45 H2O Notes= clear

 Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Date: April 25, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Sampler(s):	John Quay
-	

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow rate (mL/min)	Pump depth (ft)	Pump pressure	Maximum Drawdown allowed (ft)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-43	1"	4/25/18	11:01	12.19	24.00	4/103		18.09	30	0.3	7.95	0.694	10.3	2.60	13.0	-300.0
			11:11								7.52	0.691	10.6	0.95	13.0	-274.0
			11:14								7.54	0.690	13.5	0.78	13.0	-325.4
			11:17								7.54	0.691	19.2	0.73	13.1	-330.1
			11:20								7.55	0.692	25.6	0.66	13.2	-335.0
			11:23								7.56	0.691	33.8	0.63	13.3	-334.5
			11:26								7.56	0.691	35.7	0.61	13.4	-332.1
			11:29								7.56	0.691	35.6	0.59	13.4	-333.9
																ļ
																ļ

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 11.81 3-WV=

AGP= 0.50

Sample Time= 11:35 H2O Notes= clear

Client: POI - AEP - Tanners Creek

Project #: 170EM00522

Location: 800 AEP Dr., Lawrenceburg, IN

Sampler(s): John Quay

Sampler Equipment: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

April 25, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-45	1"	4/25/18	9:54	11.28	20.00	4/103			15.64	30	0.3		8.05	0.544	27.0	5.81	13.0	-319.8
			10:04										7.50	0.538	10.7	3.96	12.8	-283.3
			10:07										7.50	0.537	10.5	3.94	12.8	-275.0
			10:10										7.50	0.537	10.1	3.86	12.8	-265.6
							•					•				•		
																		1

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 8.72

3-WV=

AGP= 0.25

Sample Time= 10:15 H2O Notes= clear

Location: 800 AEP Dr., Lawrenceburg, IN

Sampler(s): John Quay

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Date: April 25, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-47	1"	4/25/18	07:47	13.68	32.00	4/103			29.5	40	0.3		8.11	0.634	122.8	4.95	12.1	-249.5
			07:57										8.06	0.626	175.1	11.74	12.3	-239.2
			08:07										8.12	0.628	126.8	12.03	12.4	-227.1
			08:10										8.13	0.628	116.3	12.02	12.4	-225.1
			08:13										8.14	0.629	108.3	11.99	12.5	-228.9
			08:23										8.18	0.630	96.9	11.88	12.5	-222.6
						readings pa	aused to cle	ar out exces	s sedimen	t that was s	tuck in flow t	hrough cell,	adversely a	affecting turbid	ity readings			
			08:57										7.97	0.631	105.6	9.41	12.9	-207.1
			09:00										7.96	0.631	104.3	9.35	12.8	-202.8
			09:03										7.94	0.631	104.4	9.15	12.8	-205.1
			09:06										7.94	0.631	102.6	9.08	12.8	-208.1
								•										

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH=

3-WV=

AGP=

Sample Time=

H2O Notes=

Client: POI - AEP - Tanners Creek

Project #: 170EM00522

Location: 800 AEP Dr., Lawrenceburg, IN

Sampler(s): John Quay

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Date: April 25, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivi ty (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-50	1"	4/25/18	14:15	6.20	28.00	6/165			17.1	30	0.3		7.96	0.687	347.5	4.23	15.8	-417.4
			14:25	6.21									7.40	0.674	317.2	1.43	14.3	-181.2
			14:35										7.46	0.675	227.4	0.92	15.0	-217.8
			14:45										7.46	0.676	194.7	0.78	15.4	-252.6
			14:55										7.63	0.681	151.8	0.96	14.9	-233.9
			15:05										7.40	0.676	118.9	0.82	15.8	-262.7
			15:15										7.40	0.677	89.3	0.63	16.0	-252.2
			15:25										7.36	0.677	70.1	0.53	16.0	-256.5
			15:35										7.34	0.675	91.2	0.51	15.4	-266.7
			15:45										7.38	0.678	78.6	0.47	16.1	-259.1
			15:50										7.39	0.678	77.7	0.46	16.4	-281.2
			15:53										7.39	0.678	82.7	0.45	16.4	-277.1
			15:56										7.39	0.680	71.1	0.44	16.5	-276.8

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 21.8

3-WV= AGP= 1.0

Sample Time= 16:00

H2O Notes= slightly cloudy

Sampling Event: Groundwater Sampling

Location: 800 AEP Dr., Lawrenceburg, IN

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Sampler(s): John Quay

Date: April 24, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-52	1"	4/24/18	15:40	7.68	36.00	4/103			21.84	30	0.3		7.71	0.830	72.0	5.19	14.5	-223.4
			15:50										7.49	0.840	40.3	0.74	15.1	-266.7
			15:53										7.49	0.840	30.7	0.65	15.2	-273.4
			15:56										7.49	0.840	31.6	0.60	15.3	-288.0
			15:59										7.47	0.842	103.6	0.54	15.4	-269.3
			16:02										7.41	0.842	270.3	0.50	15.4	-272.0
			16:05										7.38	0.841	289.2	0.45	15.4	-292.6
			16:15										7.34	0.838	175.1	0.41	15.3	-288.6
			16:25										7.33	0.837	116.5	0.37	15.4	-271.5
				•	•	readings pa	used to cle	ar out exces	s sedimen	t that was s	stuck in flow	through cell	, adversely	affecting turbic	lity readings			
			16:33										7.37	0.837	79.0	1.00	15.4	-232.1
			16:43										7.31	0.836	58.0	0.36	15.5	-258.1
			16:46										7.30	0.836	56.0	0.37	15.5	-253.8
			16:49										7.30	0.836	55.4	0.38	15.5	-251.5

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 28.32

3-WV= AGP= 1.0

Sample Time= 16:50

H2O Notes= clear

Client: POI - AEP - Tanners Creek Project #: 170EM00522

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawreceburg, IN

Date: April 26, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-55	1"	4/26/18	07:43	16.42	36.00	4/103			26.21	40	0.3		8.01	0.744	58.7	4.14	9.9	-119.3
			07:53										7.56	0.748	46.4	3.93	10.5	-116.8
			08:03										7.56	0.750	54.6	5.31	10.9	-129.0
			08:06										7.56	0.749	62.0	5.82	11.0	-113.1
			08:09										7.56	0.748	57.5	6.04	11.2	-113.7
			08:12										7.56	0.750	58.0	6.20	11.3	-105.3

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 19.58

3-WV=

AGP= 0.25

Sample Time= 08:15

H2O Notes= slightly cloudy, yellow tint

Client: POI - AEP - Tanners Creek

Sampling Event: Groundwater Sampling

Project #: 170EM00522

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 26, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-56	1"	4/26/18	09:29	19.18	32.00	4/103			29.5	40	0.3		8.23	0.639	282.4	7.23	12.2	-422.0
			09:39	19.25									7.63	0.635	206.8	3.68	13.6	-431.6
			09:49	19.20									7.55	0.637	117.1	2.06	13.7	-438.7
			09:59										7.50	0.635	80.5	1.73	13.8	-440.5
			10:02										7.50	0.635	68.5	1.67	13.8	-439.6
			10:05										7.49	0.636	62.7	1.61	13.9	-446.3
			10:08										7.49	0.636	55.1	1.54	13.9	-448.8
			10:18										7.49	0.639	42.6	1.37	14.2	-447.0
			10:21										7.49	0.639	42.5	1.31	14.3	-454.6
			10:24										7.49	0.640	40.6	1.27	14.3	-459.1
			10:27										7.48	0.640	39.9	1.25	14.4	-457.1

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 12.82

3-WV=

AGP= 0.50

Sample Time= 10:30

H2O Notes= slightly cloudy

Client: POI - AEP - Tanners Creek Project #: 170EM00522

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 24, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-57	1"	4/24/18	14:25	17.90	24.00	4/103			20.95	35	0.3		7.36	0.828	72.9	3.59	12.8	-90.1
			14:35										7.24	0.818	73.4	0.86	12.5	-128.9
			14:38										7.28	0.812	62.4	0.74	12.6	-149.0
			14:41										7.32	0.809	50.8	0.65	12.6	-161.1
			14:44										7.34	0.807	39.7	0.55	12.6	-157.8
			14:47										7.36	0.805	40.5	0.57	12.7	-204.3
			14:50										7.38	0.803	34.7	0.55	12.7	-211.8
			14:53										7.40	0.800	26.3	0.51	12.7	-209.5
			14:56										7.41	0.799	25.5	0.50	12.7	-198.7
			14:59										7.42	0.799	27.0	0.49	12.6	-210.2
			•															

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 6.1

3-WV=

AGP= 0.25

Sample Time= 15:05 H2O Notes= clear

Client: POI - AEP - Tanners Creek

Sampling Event: Groundwater Sampling

Project #: 170EM00522

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 26, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-59	1"	4/26/18	16:08	21.05	36.00	4/103			32	45	0.3		7.93	1.345	444.5	2.63	19.6	-418.0
			16:18										6.95	1.312	439.1	0.70	18.0	-431.4
			16:28										6.98	1.295	265.5	0.60	17.3	-422.7
			16:38										7.01	1.283	168.8	0.55	16.9	-278.9
			16:48										7.02	1.279	127.1	0.52	16.7	-258.6
			16:51										7.03	1.280	110.4	0.51	16.7	-264.4
			16:54										7.04	1.280	112.7	0.48	16.7	-272.1
			16:57										7.04	1.280	107.3	0.48	16.7	-280.8

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 14.95

3-WV=

AGP= 0.75

Sample Time= 17:00

slightly cloudy

Client: POI - AEP - Tanners Creek

Sampling Event: Groundwater Sampling

Project #: 170EM00522

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 27, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-63	1"	4/27/18	07:56	25.47	39.70	4/103			35.7	45	0.3		7.73	0.664	56.0	3.06	11.0	-251.7
			08:06										7.68	0.668	31.1	2.20	12.3	-465.2
			08:09										7.68	0.668	25.9	2.15	12.3	-451.8
			08:12										7.68	0.670	23.4	2.11	12.3	-462.7
			08:15										7.67	0.671	23.3	1.86	12.4	-462.5
			08:18										7.66	0.673	22.1	1.79	12.4	-460.6

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 14.23

3-WV=

AGP= 0.25

Sample Time= 08:25

H2O Notes= slightly cloudy

Client: POI - AEP - Tanners Creek
Project #: 170EM00522

Sampling Event: Groundwater Sampling

Project #: 1/0EM00522

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 27, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-66	1"	4/27/18	11:30	26.99	43.45	4/103			39.45	50	0.3		7.68	1.338	141.9	3.96	18.7	-387.3
			11:40										7.45	1.295	443.1	5.73	17.0	-419.9
			11:50										7.54	1.323	439.0	5.95	17.1	-464.7
			12:00										7.60	1.349	457.9	5.93	17.3	-416.7
			12:10										7.65	1.363	513.8	6.13	17.4	-408.6
			12:20										7.68	1.371	494.1	6.34	17.6	-391.2
			12:23										7.69	1.372	468.3	6.45	17.6	-376.7
			12:26										7.66	1.382	469.8	6.34	17.7	-375.0
			12:29										7.68	1.378	488.8	6.31	17.6	-382.0
																		1

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 16.46

3-WV=

AGP= 0.50

Sample Time= 12:35 H2O Notes= cloudy

Client: POI - AEP - Tanners Creek
Project #: 170EM00522

Sampling Event: Groundwater Sampling
Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 30, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-67	1"	4/30/18	10:28	21.33	31.88	4/103			27.88	40	0.3	7.46	1.738	49.4	1.98	15.8	-375.0
			10:38									7.47	1.729	30.3	0.92	16.2	-496.2
			10:48									7.47	1.726	21.9	0.63	16.6	-480.9
			10:51									7.46	1.725	20.5	0.59	16.6	-479.2
			10:54									7.46	1.725	22.4	0.57	16.7	-468.2
			10:57									7.46	1.725	20.4	0.55	16.8	-476.1
			11:00									7.46	1.727	21.0	0.53	16.9	-498.2
			11:03									7.47	1.726	20.5	0.52	17.0	-494.2
			11:06									7.47	7.725	20.4	0.51	17.0	-493.8

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH=

3-WV=

AGP=

Sample Time=

H2O Notes=

Client: POI - AEP - Tanners Creek	Sampling Event: Groundwater Sampling
Project #: 170EM00522	Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS
Location: 800 AEP Dr., Lawrenceburg, IN	Date: April 30, 2018
ampler(s): John Quay	Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-68	1"	4/30/18	14:21	25.26	32.35	4/103			29.85	40	0.3		7.99	1.061	66.5	3.20	23.3	-244.7
			14:31										7.40	1.072	105.7	0.77	20.6	-206.6
			14:41										7.51	1.078	78.1	0.55	22.8	-203.8
			14:51										7.48	1.086	78.5	0.40	24.9	-262.7
			15:01										7.45	1.079	109.5	0.90	25.9	-253.9
			15:11										7.53	1.081	130.3	0.69	27.4	-234.0
			15:21										7.58	1.084	125.4	2.39	28.6	-309.6
								NOTS	SAMPLE	D, WENT D	RY AND DI	D NOT REC	HARGE					

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 7.09

3-WV=

AGP=

Sample Time= NOT SAMPLED

H2O Notes=

Client: POI - AEP - Tanners Creek

Sampling Event: Groundwater Sampling

Project #: 170EM00522

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Location: 800 AEP Dr., Lawrenceburg, IN

Date: April 26, 2018

Sampler(s): John Quay

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-71	1"	4/26/18	14:27	30.62	46.65	4/103			42.65	55	0.3		7.90	1.221	53.2	3.04	19.2	-450.2
			14:37	30.79									7.21	1.200	88.6	1.51	18.1	-460.0
			14:47										7.23	1.203	499.8	0.73	18.1	-464.6
			14:57										7.23	1.202	611.8	0.56	18.2	-464.4
			15:07										7.21	1.199	872.7	0.49	18.2	-463.6
			15:10										7.21	1.199	862.2	0.48	18.2	-463.7
			15:13										7.21	1.198	826.6	0.47	18.2	-464.4
													, The state of the					

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 16.03

3-WV=

AGP= 1.0

Sample Time= 15:20

H2O Notes= cloudy, brownish yellow tint

Client: POI - AEP - Tanners Creek

Project #: 170EM00522

Location: 800 AEP Dr., Lawrenceburg, IN

Sampler(s): John Quay

Sampling Event: Groundwater Sampling

Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS

Date: April 26, 2018

Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-72	1"	4/26/18	11:40	30.78	44.30	4/103			41.8	55	0.3		7.07	1.792	108.2	2.63	17.1	-438.1
			11:50										7.08	1.833	119.3	0.98	17.1	-495.8
							reac	lings stoppe	d after s	oike in turbi	dity, to let we	ell purge out	some turbi	d water				
			12:40										7.00	1.459	3043.0	0.50	18.7	-495.8
			12:50										7.03	1.425	2275.5	0.41	18.7	-472.2
			12:53										7.03	1.419	2123.8	0.39	18.6	-472.9
			12:56										7.04	1.411	1758.6	0.38	18.4	-473.3
			12:59										7.04	1.409	1617.2	0.39	18.4	-473.3
			13:02										7.04	1.407	1588.1	0.39	18.4	-473.0
			13:05										7.04	1.405	1511.0	0.39	18.5	-472.8
																		
																		<u> </u>
																		ł

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH= 13.52

3-WV=

AGP= 1.5

Sample Time= 13:10 H2O Notes= cloudy, brown

Client: POI - AEP - Tanners Creek	Sampling Event: Groundwater Sampling
Project #: 170EM00522	Equipment: QED MP-15, sample pro bladder pump, YSI ProDSS
Location: 800 AEP Dr., Lawrenceburg, IN	Date: May 1, 2018
ampler(s): John Quay	Other: Parameters collected using a YSI ProDSS and flow-through cell

Well ID	WD	Date	Time	DTW (ft)	BTW (ft)	CPM Setting/ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure (ft)	Maximum Drawdown allowed (ft)	Volume purged (mL)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (degrees C)	ORP (mV)
TMW-74	1"	5/1/18	08:30	34.96	39.21	4/103			36.71	50	0.3		7.47	1.148	193.0	2.89	11.7	-227.6
			08:40										7.34	1.207	121.8	1.86	11.8	-237.2
			08:50										7.33	1.219	94.8	2.33	12.0	-254.6
								we	ll went d	iry, sample	d by bailer	after recha	rging					

WD = Well Diameter BTW = Bottom of the Well CH = Column Height 3-WV = 3 Well Volumes AGP = Actual Gallons Purged DTW = Diatance to Water

REMARKS:

CH=

3-WV=

AGP=

Sample Time= 10:15

H2O Notes= brown, very turbid

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling
Sample Date: 6/25/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-77	1"	9:45	29.90	44.70	6	184	20	120	39.70	40	10.6	6.62	1.167	-130	17.9	1.26
		10:05	29.91								10.8	6.64	1.170	-135	17.9	0.56
		10:08	29.90								9.7	6.65	1.170	-136	18.0	0.60
		10:11	29.90								8.9	6.65	1.171	-136	18.1	0.58
		10:14	29.90								8.1	6.66	1.171	-136	18.1	0.55

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 10:15

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling

Sample Date: 6/22/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)		Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-79	1"	11:20	10.32	17.35	6	184	20	120	13.84	20	110	7.53	2.976	-157	20.6	1.57
		11:35	10.32								48.1	7.59	2.946	-159	20.6	1.42
		11:45	10.33								20.4	7.59	2.944	-160	20.8	1.29
		11:48	10.32								15.6	7.60	2.944	-160	20.8	1.20
		11:51	10.33								14.8	7.60	2.943	-160	20.8	1.23
		11:54	10.33								14.6	7.60	2.943	-161	20.8	1.21

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 11:55

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling
Sample Date: 6/25/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-80	1"	13:00	34.75	39.76	6	184	20	120	37.26	20	181	7.41	1.267	-177	19.2	0.86
		13:30	34.75								124	7.50	1.324	-201	19.2	0.26
		13:40	34.75								70.1	7.57	1.358	-212	19.1	0.12
		13:50	34.75								31.7	7.57	1.358	-212	19.2	0.00
		13:53	34.75								29.9	7.58	1.360	-213	19.1	0.00
		13:56	34.75								30.6	7.58	1.360	-213	19.1	0.00

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 14:00

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling

Sample Date: 6/22/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-81	1"	12:45	21.50	29.87	6	184	20	120	25.69	20	635	7.96	4.231	-146	21.3	4.96
		13:00	21.50								396	7.74	4.218	-123	21.2	5.41
		13:20	21.50								188	7.66	4.218	-115	21.3	5.47
		13:40	21.50								61	7.48	4.210	-109	21.4	1.97
		13:50	21.50								28.6	7.47	4.205	-108	21.4	1.90
		13:53	21.50								27.2	7.47	4.204	-108	21.5	1.95
		13:56	21.50								28.1	7.46	4.204	-107	21.4	1.92

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:

Sample collected at: 14:00

collected Dup-1; clear, sheen and HC odor

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling

Sample Date: 6/21/18

Equipment: Low-flow

	1	1	1	1	ı	ı		1		1						
Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-83	1"	9:15	31.21	39.04	6	184	20	120	35.13	40	159.7	6.91	1.966	-128	20.8	2.62
		9:25	31.21								18.3	6.92	1.959	-127	20.4	2.38
		9:30	31.21								7.7	7.00	1.959	-127	20.4	2.35
		9:33	31.21								8.0	7.02	1.960	-126	20.5	2.55
		9:36	31.21								7.8	7.03	1.960	-126	20.5	2.58
		9:39	31.21								7.6	7.03	1.960	-126	20.4	2.57
		1	1				1	ı							1	

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 9:40

collected MS/MSD; clear, no sheen or odor

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling

Sample Date: 6/21/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-85	1"	11:00	19.49	32.52	6	184	20	120	27.52	40	1222	7.86	1.705	-200	19.5	1.01
		11:20	19.50								1481	7.85	1.621	-325	18.2	0.42
		11:45	19.51								872	7.88	1.544	-337	18.1	0.34
		11:50	19.48								443	7.89	1.514	-342	18.1	0.45
		12:15	19.48								73.4	7.89	1.490	-322	18.1	0.82
		12:20	19.49								65.3	7.90	1.488	-328	18.1	0.66
		12:23	19.49								67.8	7.89	1.487	-327	18.0	0.68
		12:26	19.49								65.6	7.89	1.487	-328	18.0	0.65

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 12:30

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling
Sample Date: 6/25/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-87	1"	10:50	34.93	49.38	6	184	20	120	44.38	40	80.8	7.48	0.776	-200	18.3	0.96
		11:00	34.93								63.7	7.50	0.764	-206	18.2	0.74
		11:15	34.93								40.6	7.50	0.753	-210	18.2	0.70
		11:20	34.93								24.2	7.51	0.750	-211	18.2	0.66
		11:23	34.93								25.6	7.51	0.751	-212	18.1	0.63
		11:26	34.93								24.7	7.52	0.750	-212	18.1	0.61
	1	1	1	1		1	1	1		1		1	1		1	

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 11:30

Sampling

Ports of Indiana - Former AEP Tanner's Creek 170EM00522

Client: Project No.:

Location: 800 AEP Drive, Lawrenceburg, Indiana

Sampler(s): Josh Buckel Event: Groundwater Sampling

Sample Date: 6/25/18

Equipment: Low-flow

Well ID	WD	Time	DTW (ft)	BTW (ft)	CPM Setting	Setting ID	Flow volume per cycle (mL)	Flow rate (mL/min)	Pump depth (ft)	Throttle/ Pump pressure	Turbidity (NTU)	pH (units)	Conductivity (mS/cm)	ORP (mv)	Temp (degrees C)	DO
B-88	1"	11:50	33.23	48.57	6	184	20	120	43.57	40	167.2	7.83	1.085	-201	19.3	0.68
		12:00	33.23								130	7.70	1.142	-206	19.1	0.53
		12:20	33.23								70.6	7.64	1.182	-212	19.1	0.47
		12:30	33.23								48.7	7.61	1.192	-215	19.1	0.42
		12:33	33.23								30.3	7.61	1.195	-214	19.0	0.37
		12:36	33.23								33.1	7.60	1.196	-215	19.0	0.36
		12:39	33.23								32.7	7.59	1.195	-215	18.9	0.34

WD = Well Diameter BTW = Bottom of the Well DTW = Depth to Water CPM = Cycles per Minute

REMARKS:

Gallons of groundwater purged during the sampling event:
Sample collected at: 12:40

Appendix C – Soil and Groundwater Laboratory Reports (Provided on CD)

Olin

Water Sample Results

SDRSD-Well
370 W. Eads PKwy

Eagon & Associates Attn: Steve Champa

100 Old Wilson Bridge Rd. Suite 115

Worthington, OH 43085

Project Name:

Lawrenceburg

Sample ID:

SDRSD

Lab Sample #

M18-14570-05

api8 Metals

Lab Project #

M18-14570

Received:

3/14/2018

Reported: Date/Time Sampled: 3/22/2018 03/13/2018 12:20

ampled By:

NAK

impled Matrix:

Groundwater

ntainers:

ection Method:

Grab

Analyte	Results	Units	PQL	Analyst		lysis Start ate/Time		
Analytical Method: EPA 300.0 Rev 2.1	Preparatio	Preparation Method: Analysi						
Chloride	36	mg/L	5.0	DAW	03/	15/2018 00:07		
Analytical Method: SM 4500-F C-97	Preparatio	n Method: Un	distilled		Analysis Date	: 3/22/201		
Fluoride	0.189	mg/L	0.100	LGE	03/	15/2018 05:04		
Analytical Method: EPA 300.0 Rev 2.1	Preparatio	n Method:			Analysis Date	: 3/22/201		
Sulfate	120	mg/L	5.0	DAW	03/	15/2018 00:07		
Analytical Method: SM 2540C-97	Preparatio	n Method:			Analysis Date	: 3/22/201		
Solids, Dissolved	510	mg/L	20	АКВ	03/	19/2018 16:00		
Analytical Method: EPA 200.7 Rev. 4.4	Preparatio	n Method: EP		Analysis Date	3/22/201			
Boron, Total	700	ug/L	10	СМВ	03/	15/2018 19:06		
Calcium, Total	105	mg/L	2.00	CMB	03/	15/2018 19:06		
Cobalt, Total	<10	ug/L	10	СМВ	03/	15/2018 19:06		
Analytical Method: EPA 200.8 Rev. 5.4	Preparatio	n Method: EP	A-200.8		Analysis Date	: 3/22/201		
Antimony, Total	<3.0	ug/L	3.0	SLB	03/	16/2018 09:41		
Arsenic, Total	<3.0	ug/L	3.0	SLB	03/	16/2018 09:41		
Barlum, Total	52	ug/L	10	SLB	03/16/2018 09:41			
Beryllium, Total	<0.50	ug/L	0.50	SLB	03/	03/16/2018 09:41		
	<0.50	ug/L	0.50	SLB	03/16/2018 09:41			
Cadmium, Total	-0.00	-5	5305 5					

Analysis Certified By:

Rhonda C Morris

Rlanda P. movis

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 12:20

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

Collection Method:

Grab

Sample ID:

SDRSD

Lab Sample #

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

M18-14570-05

Lawrenceburg

Analyte	Results	Units	PQL	Analyst	Extraction Date	Analysis Start Date/Time	
Lead, Total	<2.0	ug/L	2.0	SLB		03/16/2018 09:41	
Lithium, Total	<10	ug/L	10	SLB	03/16/2018 10:2		
Molybdenum, Total	<10	ug/L	10	SLB		03/16/2018 09:41	
Selenium, Total	<3.0	ug/L	3.0	SLB		03/16/2018 09:41	
Thallium, Total	<1.0	ug/L	1.0	SLB		03/16/2018 09:41	
Analytical Method: EPA 245.1 Rev. 3.0	Preparation	n Method: EP	A-245.1		Analys	is Date: 3/22/201	
Mercury, Total	<0.200	ug/L	0.200	LGE		03/20/2018 05:10	

Analysis Certified By:

Rhonda C Morris

Rlanda P. Morris

LMS - Well

1055 Green Buld

Behind Property

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018 03/13/2018 12:05

mpled By:

ate/Time Sampled:

ction Method:

NAK

npled Matrix:

Groundwater

tainers:

Grab

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

Lawrenceburg

2018 Metals

Sample ID:

LMS-Wilson Creek

Lab Sample #

M18-14570-04

Analyte	Results	Units	PQL	Analyst		ysls Start te/Time
Analytical Method: EPA 300.0 Rev 2.1	Preparation	n Method:			Analysis Date:	3/22/2018
Chloride	24	mg/L	5.0	DAW	03/1	5/2018 00:07
Analytical Method: SM 4500-F C-97	Preparation	on Method: U	ndistilled		Analysis Date:	3/22/2018
Fluoride	0.307	mg/L	0.100	LGE	03/1	5/2018 05:04
Analytical Method: EPA 300.0 Rev 2.1	Preparation	on Method:			Analysis Date:	3/22/2011
Sulfate	39	mg/L	5.0	DAW	03/1:	5/2018 00:07
Analytical Method: SM 2540C-97	Preparation	on Method:		,	Analysis Date:	3/22/201
Solids, Dissolved	330	mg/L	20	AKB	03/1	9/2018 16:00
Analytical Method: EPA 200.7 Rev. 4.4	Preparation	on Method: E	PA-200.7		Analysis Date:	3/22/201
Boron, Total	40	ug/L	10	СМВ	03/1	5/2018 19:06
Calcium, Total	72.4	mg/L	2.00	CMB	03/1	5/2018 19:06
Cobalt, Total	<10	ug/L	10	СМВ	03/1	5/2018 19:06
Analytical Method: EPA 200.8 Rev. 5.4	Preparation	on Method: E	PA-200.8		Analysis Date:	3/22/201
Antimony, Total	<3.0	ug/L	3.0	SLB	03/1	6/2018 09:41
Arsenic, Total	<3.0	ug/L	3.0	SLB	03/1	6/2018 09:41
Barium, Total	30	ug/L	10	SLB	03/1	6/2018 09:41
Beryllium, Total	<0.50	ug/L	0.50	SLB	03/1	6/2018 09:41
Cadmium, Total	<0.50	ug/L	0.50	SLB	03/1	6/2018 09:41
Chromium, Total	<10	ug/L	10	SLB	03/1	6/2018 09:41

Analysis Certified By:

Rhonda C Morris

Rlanda ! movis

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

CERTIFICATE OF ANALYSIS Reported by Alloway - Marion

Chain of Custody attached

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 12:05

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

3

Collection Method:

Grab

Sample ID:

LMS-Wilson Creek

Lab Sample #

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

M18-14570-04

Lawrenceburg

Analyte	Results	Units	PQL	Analyst	Extraction Analysis Start Date Date/Time
Lead, Total	<2.0	ug/L	2.0	SLB	03/16/2018 09:41
Lithium, Total	<10	ug/L	10	SLB	03/16/2018 10:27
Molybdenum, Total	<10	ug/L	10	SLB	03/16/2018 09:41
Selenium, Total	<3.0	ug/L	3.0	SLB	03/16/2018 09:41
Thallium, Total	<1.0	ug/L	1.0	SLB	03/16/2018 09:41
Analytical Method: EPA 245.1 Rev. 3.0	Preparation	Method: EP	A-245.1		Analysis Date: 3/22/2011
Mercury, Total	<0.200	ug/L	0.200	LGE	03/20/2018 05:10

Analysis Certified By:

Rlanda P. Morris

Rhonda C Morris

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

Eagon & Associates Attn: Steve Champa

100 Old Wilson Bridge Rd. Suite 1

Worthington, OH 43085

Aurora Well
Aurora Well
1238 W. Eads Property
Behind Property
2018
Metals

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:45

Sampled By:

NAK

ampled Matrix:

Groundwater

ntainers:

ection Method:

Grab

Project Name:

Lawrenceburg

Sample ID:

Aurora

Lab Sample #

M18-14570-03

Analyte	Results	Units	PQL	Analyst	Extraction An Date I	alysis Start Date/Time		
Analytical Method: EPA 300.0 Rev 2.1	Preparation	Preparation Method:			Analysis Date: 3/22/20			
Chloride	33	mg/L	5.0	DAW	03	/15/2018 00:07		
Analytical Method: SM 4500-F C-97	Preparation	n Method: Un	distilled		Analysis Da	te: 3/22/201		
Fluoride	0.247	mg/L	0.100	LGE	03	3/15/2018 05:04		
Analytical Method: EPA 300.0 Rev 2.1	Preparation	n Method:			Analysis Da	te: 3/22/201		
Sulfate	110	mg/L	5.0	DAW	00	3/15/2018 00:07		
Analytical Method: SM 2540C-97	Preparation	n Method:			Analysis Da	te: 3/22/201		
Solids, Dissolved	480	mg/L	20	AKB	0:	3/19/2018 16:00		
Analytical Method: EPA 200.7 Rev. 4.4	Preparation	n Method: EF	PA-200.7		Analysis Da	te: 3/22/201		
Boron, Total	1000	ug/L	50	СМВ	0:	3/15/2018 19:06		
Calcium, Total	100	mg/L	2.00	CMB	0:	3/15/2018 19:06		
Cobalt, Total	<10	ug/L	10	CMB	0:	3/15/2018 19:06		
Analytical Method: EPA 200.8 Rev. 5.4	Preparation	n Method: El	PA-200.8		Analysis Da	te: 3/22/201		
Antimony, Total	<3.0	ug/L	3.0	SLB	0	3/16/2018 09:41		
Arsenic, Total	<3.0	ug/L	3.0	SLB	0	3/16/2018 09:41		
Barium, Total	44	ug/L	10	SLB	0	3/16/2018 09:41		
Beryllium, Total	<0.50	ug/L	0.50	SLB	0	03/16/2018 09:41		
Cadmium, Total	<0.50	ug/L	0.50	SLB	0	3/16/2018 09:41		
Chromium, Total	<10	. ug/L	10	SLB	0	3/16/2018 09:41		

Analysis Certified By:

Chromium, Total

Rhonda C Morris

Rhonda G. Morris

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:45

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

3

Collection Method:

Grab

Sample ID:

Aurora

Lab Sample #

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

M18-14570-03

Lawrenceburg

Analyte	Results	Units	PQL	Analyst	Extraction Date	Analys Date	is Start Time
Lead, Total	<2.0	ug/L	2.0	SLB		03/16/2	018 09:41
Lithium, Total	<10	ug/L	10	SLB	03/16/2018 10:2		018 10:27
Molybdenum, Total	<10	ug/L	10	SLB	03/16/2018 09:4		018 09:41
Selenium, Total	<3.0	ug/L	3.0	SLB		03/16/2	018 09:41
Thallium, Total	<1.0	ug/L	1.0	SLB		03/16/2	018 09:41
Analytical Method: EPA 245.1 Rev. 3.0	Preparation	Method: EP	A-245.1		Analysis	s Date:	3/22/2011
Mercury, Total	<0.200	ug/L	0.200	LGE		03/20/2	018 05:10

Analysis Certified By:

Rhonda C Morris

Rlanda P. morris

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

Eagon & Associates Attn: Steve Champa 100 Old Wilson Bridge Rd. Sui Worthington, OH 43085

LMU-Well #24 335 W. Eads Prwy 2018 metals

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:25

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

Collection Method:

Grab

Sample ID:

Project Name:

Well #4

Lab Sample #

M18-14570-02

Lawrencebi

Analyte	oults	Units	PQL	Analyst		ysis Start te/Time		
Analytical Method: EPA 300.0 Rev 2.1	Preparatio	n Method:			Analysis Date:	3/22/2018		
Chloride	77	mg/L	5.0	DAW	03/18	5/2018 00:07		
Analytical Method: SM 4500-F C-97	Preparatio	n Method: U	ndistilled		Analysis Date:	3/22/2011		
Fluoride	0.168	mg/L	0.100	LGE	03/1	5/2018 05:04		
Analytical Method: EPA 300.0 Rev 2.1	Preparatio	n Method:			Analysis Date:	3/22/201		
Sulfate	100	mg/L	5.0	DAW	03/1	5/2018 00:07		
Analytical Method: SM 2540C-97	Preparation	n Method:			Analysis Date:	3/22/201		
Solids, Dissolved	590	mg/L	20	AKB	03/1	9/2018 16:00		
Analytical Method: EPA 200.7 Rev. 4.4	Preparation	n Method: E	PA-200.7	El .	Analysis Date:	3/22/201		
Boron, Total	190	ug/L	10	СМВ		5/2018 19:06		
Calcium, Total	121	mg/L	2.00	CMB	03/1	5/2018 19:06		
Cobalt, Total	<10	ug/L	10	CMB	03/1	5/2018 19:06		
Analytical Method: EPA 200.8 Rev. 5.4	Preparation	on Method: E	PA-200.8		Analysis Date:	3/22/201		
Antimony, Total	<3.0	ug/L	3.0	SLB		6/2018 09:41		
Arsenic, Total	<3.0	ug/L	3.0	SLB	03/1	6/2018 09:41		
Barium, Total	53	ug/L	10	SLB	03/1	03/16/2018 09:41		
Beryllium, Total	<0.50	ug/L	0.50	SLB	03/1	03/16/2018 09:41		
Cadmium, Total	<0.50	ug/L	0.50	SLB	03/1	6/2018 09:41		
Chromium, Total	<10	ug/L	10	SLB	03/1	6/2018 09:41		

Analysis Certified By:

Rhonda C Morris

Rehndal movies

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory. The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

1101 N. Cole St. · Lima, Ohio 45805 419.223.1362 • Fax 419.227.3792 800.436.1243

1500 W. Fourth St., Suite 4 · Mansfield, Ohio 44906 419.525.1644 • Fax 419.524.5575 800.635.3222

1776 Marion-Waldo Rd. • Marion, Ohio 43302 740.389.5991 • Fax 740.389.1481 800.873.2835

CERTIFICATE OF ANALYSIS

Reported by Alloway - Marion

Chain of Custody attached

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:25

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

3

Collection Method:

Grab

Sample ID:

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

Well #4

Lab Sample #

M18-14570-02

Lawrenceburg

Analyte	Results	Units	PQL	Analyst	Extraction Date	Analysis Start Date/Time
Lead, Total	<2.0	ug/L	2.0	SLB		03/16/2018 09:41
Lithium, Total	<10	ug/L	10	SLB		03/16/2018 10:27
Molybdenum, Total	<10	ug/L	10	SLB		03/16/2018 09:41
Selenium, Total	<3.0	ug/L	3.0	SLB		03/16/2018 09:41
Thallium, Total	<1.0	ug/L	1.0	SLB		03/16/2018 09:41
Analytical Method: EPA 245.1 Rev. 3.0	Preparatio	on Method: EF	PA-245.1		Analys	is Date: 3/22/201
Mercury, Total	<0.200	ug/L	0.200	LGE		03/20/2018 05:10

The matrix spike/matrix spike duplicate recoveries were biased below method limits.

Analysis Certified By:_

Rhonda C Morris

Reaman P. morris

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

Page 1

Eagon & Associates Attn: Steve Champa

100 Old Wilson Bridge Rd. Suite

Worthington, OH 43085

Project Name:

Lawrencebur

Sample ID:

Antimony, Total

Arsenic, Total

Barium, Total

Beryllium, Total

Cadmium, Total

Well #1

Lab Sample #

M18-14570-01

LMU - Well # 1

Speedway Dr.

Speedway Dr.

Fairgrounds

Fairgrounds

Metals

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:00

Sampled By:

NAK

Sampled Matrix: Containers:

Groundwater

ollection Method:

SLB

SLB

SLB

SLB

SLB

3.0

3.0

10

0.50

0.50

3 Grab

Analyte	Results	Units	PQL	Analyst		ysis Start ite/Time
Analytical Method: EPA 300.0 Rev 2.1	Preparation	Method:			Analysis Date:	3/22/2018
Chloride	37	mg/L	5.0	DAW	03/1	4/2018 21:02
Analytical Method: SM 4500-F C-97	Preparation	Method: Un	distilled		Analysis Date	3/22/2018
Fluoride	0.170	mg/L	0.100	LGE	03/1	5/2018 05:04
Analytical Method: EPA 300.0 Rev 2.1	Preparation	Method:	ě.		Analysis Date	3/22/2018
Sulfate	 35	mg/L	5.0	DAW	03/1	4/2018 21:02
Analytical Method: SM 2540C-97	Preparation	Method:			Analysis Date	: 3/22/2018
Solids, Dissolved	420	mg/L	20	AKB	03/1	9/2018 15:20
Analytical Method: EPA 200.7 Rev. 4.4	Preparation	Method: EP	A-200.7		Analysis Date	: 3/22/201
Boron, Total	130	ug/L	10	CMB	03/	15/2018 19:06
Calcium, Total	100	mg/L	2.00	CMB		15/2018 19:06
Cobalt, Total	<10	ug/L	10	СМВ	03/	15/2018 19:06
Analytical Method: EPA 200.8 Rev. 5.4	Preparation	Method: EF	PA-200.8		Analysis Date	: 3/22/201

<3.0

<3.0

<0.50

< 0.50

90

ug/L

ug/L

ug/L

ug/L

ug/L

Rehndal. morris Analysis Certified By:

Rhonda C Morris

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory. The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

1101 N. Cole St. . Lima, Ohio 45805 419.223.1362 • Fax 419.227.3792 800.436.1243

1500 W. Fourth St., Suite 4 · Mansfield, Ohio 44906 419.525.1644 • Fax 419.524.5575 800.635.3222

1776 Marion-Waldo Rd. • Marion, Ohio 43302 740.389.5991 • Fax 740.389.1481 800.873.2835

03/16/2018 09:41

03/16/2018 09:41

03/16/2018 09:41

03/16/2018 09:41

03/16/2018 09:41

CERTIFICATE OF ANALYSISReported by Alloway - Marion

Chain of Custody attached

Lab Project #

M18-14570

Received:

3/14/2018

Reported:

3/22/2018

Date/Time Sampled:

03/13/2018 11:00

Sampled By:

NAK

Sampled Matrix:

Groundwater

Containers:

3

Collection Method:

Grab

Sample ID:

Project Name:

Eagon & Associates

Attn: Steve Champa

Worthington, OH 43085

100 Old Wilson Bridge Rd. Suite 115

Well #1

Lab Sample #

M18-14570-01

Lawrenceburg

Analyte	Results	Units	PQL	Analyst	Extraction Date	Analysis S Date/Tin	
Chromium, Total	<10	ug/L	10	SLB		03/16/2018	3 09:41
Lead, Total	<2.0	ug/L	2.0	SLB		03/16/2018	3 09:41
Lithium, Total	<10	ug/L	10	SLB	03/16/2018		3 10:27
Molybdenum, Total	<10	ug/L	10	SLB		03/16/2018	3 09:41
Selenium, Total	<3.0	ug/L	3.0	SLB		03/16/2018	8 09:41
Thallium, Total	<1.0	ug/L	1.0	SLB		03/16/2018	8 09:41
Analytical Method: EPA 245.1 Rev. 3.0	Preparation	Preparation Method: EPA-245.1			Analysis Date: 3/22/201		
Mercury, Total	<0.200	ug/L	0.200	LGE		03/20/2018	8 05:10

Analysis Certified By:_

Rhonda C Morris

Rlanda ! movies

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

The results presented on this Certificate of Analysis only reflect those parameters that were requested by the client on the chain of custody or other documentation received with the sample(s). The analytical results relate only to the items tested. Analytical results are based on dry-weights for solid samples, unless otherwise specified.

Laboratory Analysis

Instantly access all of your www.envirolabsinc.com

Report To:

A. d. 7

Andrew Lyons Lawrenceburg Water 230 Walnut Street P.O. Box 4198 LAWRENCEBURG, IN 47025-

LMU - Well # 2 Speedway
L'Burs Fairsrounds
2016

nvironmental aboratories, nc.

635 Green Road, PO Box 968, Madison, IN 47250 Tel: 812.273.6699 Fax: 812.273.5788

Order No.:

2016082148

PO No.:

ate Received:

08/16/2016

port Date:

09/13/2016

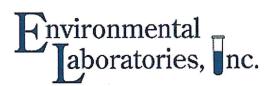
iect Name:

WATER QUALITY

			-	· Q	och ty			
Order Number	Lab Id Matrix	Total	Was CBURG	rected	rime Collected	Collected By	Description	Status
2016082148	CAL	F. JONDS		8/16/2016	09:30	AL	RAW WATER	Reported
	Test Name	Results	Units	Analyst		Detection Limit	Test Method	Analysis Date
	Aggressive Index	12.07	Calculation	DD			AWWA-1946	9/13/2016
	Ryznar Index	6.32	Calculation	DD			AWWA-1946	9/13/2016
	Corrosivity, (Langelier Index) Comments:	0.62	Calculation	DD	,		SM-2330B	9/13/2016
Order Number	Lab Id Matrix	Location		Date Collected	Time Collected	Collected By	Description	Status
2016082148	P0816-438	WELL #2 LAW FAIRGROUNDS		8/16/2016	09:30	AL	RAW WATER	Reported
	Test Name	Results	Units	Analyst		Detection Limit	Test Method	Analysis Date
	Alkalinity, Total (EP-pH=4.5)	288	mg/L as CaCO3	KS		2.0	SM-2320B	8/22/2016
	Chloride	41.9	mg/L	HW		0.03	EPA 300.1	8/24/2016
	Conductivity	668	µmhos/cm	DD		1.0	SM-2510B	9/13/2016
	Fluoride,Adjusted	0.162	mg/L	HW		0.02	EPA 300.1	8/24/2016
	pH	7.55	S.U.	KS		0.10	SM-4500H+B	8/18/2016
	Sulfate	41.9	mg/L	HW		0.2	EPA 300.1	8/24/2016
	Solids, Dissolved Total	440	mg/L	ZB		1.0	SM-2540C	8/19/2016
	Solids, Suspended Total Comments:	<1.0	mg/L	ZB		1.0	SM-2540D	8/17/2016
Order Number	Lab Id Matrix	Location		Date Collected	Time Collected	Collected By	Description	Status
2016082148	P0816-439	WELL #2 LAW FAIRGROUNDS		8/16/2016	09:30	AL	RAW WATER	Reported
	Test Name	Results	Units	Analyst		Detection Limit	Test Method	Analysis Date
	Calcium, Total Rec(ICP)	115	mg/L	DD		0.2	EPA 200.7	8/24/2016
	Magnesium, Total Rec(ICP)	29.0	mg/L	DD	Λ.	0.5	EPA 200.7	8/24/2016
	Sodium, Total Rec(ICP)	21.1	mg/L	DD	-	0.5	EPA 200.7	8/24/2016

Laboratory Analysis

Instantly access all of your Data 24/7/365 by going to www.envirolabsinc.com and clicking on Client Data Support.


Report To:

Andrew Lyons Lawrenceburg Water

230 Walnut Street

P.O. Box 4198

LAWRENCEBURG, IN 47025-9085

635 Green Road, PO Box 968, Madison, IN 47250 Tel: 812.273.6699 Fax: 812.273.5788

Order No.:

2016082148

PO No.:

Date Received:

08/16/2016

Report Date:

09/13/2016

Project Name:

WATER QUALITY

Potassium, Total R	ec(ICP) 2.10	mg/L	DD	0.5	EPA 200.7	8/24/2016
Hardness, Total- a	s CaCO3 407	mg/L	DD	1.0	SM-2340B	8/24/2016
Hardness-(Ca)- as	CaCO3 288	mg/L	DD	1.0	SM-2340B	8/24/2016
Hardness-(Mg)- as	CaCO3 119	mg/L	DD	1.0	SM-2340B	8/24/2016
Hardness-(Mg)- as	MgCO3 100	mg/L	DD	1.0	SM-2340B	8/24/2016
Iron, Total Rec(I	CP) 0.122	mg/L	DD	0.005	EPA 200.7	8/24/2016
Manganese, Total	Rec(ICP) 0.042	mg/L	DD	0.003	EPA 200.7	8/24/2016
Metal Digestion (IC	CP) DONE		BD		EPA 200.7	8/19/2016
Comments:						

Joe Paszek Bastin-Logan P.O. Box 55 237 W. Monroe St. Franklin, IN 46131 TEL: 317-738-4577 FAX (317) 738-9295

LMU - Well #4 335 W. Eads Pkwy 2006

Contaminant Screening

for newly installed well. Order No.: C06070703

August 21, 2006

RE:

Dear Joe Paszek:

Sherry Laboratories received 1 sample on 7/27/06 for the analyses presented in the following report.

In accordance with your instructions, Sherry Laboratories conducted the analysis on samples submitted by your company. The results are shown on the following report. The results relate only to the items tested. Unless otherwise noted, all analysis was conducted using EPA approved methodologies. Subcontracted tests are indicated by "SUB" as the analyst. All relevant sampling information is recorded on the attached chain-of-custody form.

Certifications/Accreditations: IN# C-03-02 Col IN# C-18-02 Mun IN# C-02-02 Ftw IN# M-3-2 Col IN# M-18-5 Mun

If you have any questions regarding these test results, please feel free to call.

This report contains 2 pages.

Testing Today - Protecting Tomorrow®

CLIENT:

Bastin-Logan

Lab Order:

C06070703

Project:

Lab ID: Date Received: C06070703-01A

27-Jul-06

Client Sample ID: Lawrenceburg Well #4

Tag Number:

Collection Date: 7/27/06 9:00:00 AM

Matrix: DRINKING WATER

Date Reported: 21-Aug-06

Analyses	Result	Detection Limit	Qual	Units	Date Analyzed	Analyst
VOCS IN DRINKING WATER	E524.2	2				SUB
1,1,1,2-Tetrachloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1,1-Trichloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1,2,2-Tetrachloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1,2-Trichloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1-Dichloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1-Dichloroethene	ND	0.50		ppb	8/3/06 12:	21:00 A
1,1-Dichloropropene	ND .	0.50		ppb	8/3/06 12:	21:00 A
1,2,3-Trichloropropane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,2,4-Trichlorobenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
1,2-Dichlorobenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
1,2-Dichloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,2-Dichloropropane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,3-Dichlorobenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
. 1,3-Dichloropropane	ND	0.50		ppb	8/3/06 12:	21:00 A
1,4-Dichlorobenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
2,2-Dichloropropane	ND	0.50		ppb	8/3/06 12:	21:00 A
2-Chlorotoluene	ND	0.50		ppb	8/3/06 12:	21:00 A
4-Chlorotoluene	ND	0.50		ppb	8/3/06 12:	21:00 A
Benzene	ND	0.50		ppb	8/3/06 12:	21:00 A
Bromobenzene	· ND	0.50		ppb	8/3/06 12:	21:00 A
Bromomethane	ND	0.50		ppb	8/3/06 12:	21:00 A
Carbon tetrachloride	ND	0.50		ppb	8/3/06 12:	21:00 A
Chlorobenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
Chloroethane	ND	0.50		ppb	8/3/06 12:	21:00 A
Chloromethane	ND	0.50		ppb	8/3/06 12:	21:00 A
cis-1,2-Dichloroethene	ND	0.50		ppb	8/3/06 12:	21:00 A
cis-1,3-Dichloropropene	ND	0.50		ppb	8/3/06 12:	21:00 A
Dibromomethane	ND	0.50		ppb	8/3/06 12:	21:00 A
Ethylbenzene	ND	0.50		ppb	8/3/06 12:	21:00 A
Methyl tert-butyl ether	ND	0.50		ppb	8/3/06 12:	
Methylene chloride	ND	0.50		ppb	8/3/06 12:	
Styrene	ND	0.50		ppb	8/3/06 12:	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds MCL or Permit Limitation

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

MI+ - Matrix Interference

Page 1 of 4

Testing Today - Protecting Tomorrow®

CLIENT:

Bastin-Logan

Lab Order:

C06070703

Project: Lab ID:

C06070703-01A

Date Received:

27-Jul-06

Client Sample ID: Lawrenceburg Well #4

Tag Number:

Collection Date: 7/27/06 9:00:00 AM

Matrix: DRINKING WATER

Date Reported: 21-Aug-06

Analyses	Resul	Detection Limit	Qual	Units	Date Analyzed	Analyst
Tetrachloroethene	ND	0.50	THE PROPERTY OF THE PARTY OF TH	ppb	8/3/06 12:21	:00 A
Toluene	ND	0.50		ppb	8/3/06 12:21	:00 A
trans-1,2-Dichloroethene	ND	0.50		ppb	8/3/06 12:21	:00 A
trans-1,3-Dichloropropene	ND	0.50		ppb	8/3/06 12:21	:00 A
Trichloroethene	ND	0.50		ppb	8/3/06 12:21	:00 A
Vinyl chloride	ND	0.50		ppb	8/3/06 12:21	:00 A
Xylenes, Total	ND	0.50		ppb	8/3/06 12:21	:00 A
Surr: 1,2-Dichlorobenzene-d4	87.2	70-130		%REC	8/3/06 12:21	:00 A
Surr: Bromofluorobenzene	93.9	70-130		%REC	8/3/06 12:21	:00 A
m,p-Xylene	ND	0.50		ppb	8/3/06 12:21	:00 A
o-Xylene	ND	0.50		ppb	8/3/06 12:21	:00 A
ALKALINITY; TOTAL, CARB, BICARB Alkalinity, Total (As CaCO3)	299	M2320 B 5.00		ppm	8/8/06	SMM
CHLORIDE		E325.2				SUB
Chloride	73.9	5.0		ppm	8/3/06	000
CYANIDE IN DW, TOTAL		M4500-CN CE				SUB
Cyanide	ND	0.020		ppm	8/2/06	
DISSOLVED OXYGEN		E360.2				TMS
Oxygen, Dissolved	6.93	1.00		ppm	7/27/06 1:30	:00 Þ
FLUORIDE IN DRINKING WATER		M4500-F C				SUB
Fluoride	0.15	0.10		ppm	8/12/06	
MERCURY IN DRINKING WATER		E245.1				SUB
Mercury	ND	0.00010		ppm	8/4/06	
CORROSIVITY, LANGELIER CALCULAT	TION	A203				POG
Langelier Value	+ 0.05	0		SI	8/19/06	
METALS IN DW BY GFAA		E200.9				SUB
Antimony	ND	0.00100		ppm	8/11/06	
Arsenic	ND	0.00500		ppm	8/3/06	
Lead	ND	0.00400		ppm	8/11/06	
Selenium	ND	0.00500		ppm	8/3/06	
Oualifiers: ND - Not Detected at the Repo			Recovery		ted recovery limits	······································

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds MCL or Permit Limitation

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

MI+ - Matrix Interference

Testing Today - Protecting Tomorrow®

CLIENT:

Bastin-Logan

Lab Order:

C06070703

Project: Lab ID:

C06070703-01A

Date Received:

27-Jul-06

Client Sample ID: Lawrenceburg Well #4

Tag Number:

Collection Date: 7/27/06 9:00:00 AM

Matrix: DRINKING WATER

Date Reported: 21-Aug-06

Analyses	Resul		Detection Limit	Qual	Units	Date Analyzed	Analyst
Thallium	ND		0.00100		ppm	8/10/06	
METALS BY ICP FOR DW		E200.7		,			SUB
Barium	0.0501	-	0.0200		ppm	8/1/06 10:	45:39 A
Beryllium	ND		0.00200		ppm	8/1/06 10:	45:39 A
Cadmium	ND		0.00200		ppm	8/1/06 10:	45:39 A
Calcium	102		0.0500		ppm	8/1/06 10:	45:39 A
Chromium	ND		0.00500		ppm	8/1/06 10:	45:39 A
Copper	ND		0.00400		ppm	8/1/06 10:	45:39 A
Iron	ND		0.0200		ppm	8/1/06 10:	45:39 A
Manganese	ND		0.0100		ppm	8/1/06 10:	45:39 A
Silver	ND		0.0100		ppm	8/1/06 10:	45:39 A
Sodium	31.8		0.200		ppm	8/3/06 1:4	5:18 PM
Zinc	ND		0.0100		ppm	8/1/06 10:	45:39 A
NITRITE IN DW		M4500-NO2	В				HEB
Nitrogen, Nitrite	ND		0.005		ppm	7/28/06 10):00:00 A
NITRATE IN DW		M4500-NO3	D				HEB
Nitrogen, Nitrate (As N)	1.27		1.00		ppm	8/3/06	
PH		E150.1					TMS
pН	7.19		0.10		pH units	7/27/06 1:	20:00 P
SULFATE		E375.2					SUB
Sulfate	80.6		10		ppm	8/8/06	
TOTAL DISSOLVED SOLIDS		E160.1					SMM
Total Dissolved Solids (Residue, Filterable)	578		30		ppm	7/27/06	
TEMPERATURE		M2550B					GLP
Temperature	10		1.0		°C	7/27/06	
TRIHALOMETHANES IN DW		E524.2					SUB
Bromodichloromethane	ND		0.50		ppb	7/31/06 6:	55:00 Å
Bromoform	ND		0.50		ppb	7/31/06 6:	55:00 A
Chloroform	ND		0.50		ppb	7/31/06 6:	55:00 A

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds MCL or Permit Limitation

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

MI+ - Matrix Interference

Testing Today - Protecting Tomorrow®

CLIENT:

Bastin-Logan

Lab Order:

C06070703

Project: Lab ID:

C06070703-01A

Date Received:

27-Jul-06

Client Sample ID: Lawrenceburg Well #4

Tag Number:

Collection Date: 7/27/06 9:00:00 AM

Matrix: DRINKING WATER

Date Reported: 21-Aug-06

Analyses	Result	Detection Limit	Qual	Units	Date Analyzed	Analyst
Dibromochloromethane	ND	0.50		ppb	7/31/06 6:	
Total Trihalomethanes	ND	0.50		ppb	7/31/06 6:	55:00 A
Surr: 1,2-Dichlorobenzene-d4	103	70-130		%REC	7/31/06 6:	55:00 A
Surr: Bromofluorobenzene	104	70-130		%REC	7/31/06 6:	55:00 A
TURBIDITY	E,	180.1				HEB
Turbidity	0.200	0.0500		NTU.	7/28/06	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds MCL or Permit Limitation

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

MI+ - Matrix Interference

Page 1 of 2 8/16/06

SUBMITTED TO:

Gail Pickens
Sherry Laboratories
629 Washington St., Suite 300
Columbus, IN 47201

REFERENCE DATA:

Client Sample Nos.:

C06070703-01A

P.O. Number:

Not Available

Sample Location:

Not Available

Sample Type:

Drinking Water

Method Reference:

Asbestos in Potable Water by TEM

EPA 600/4-83-043, Method 100.1

DCL Set ID No.:

06-T-3735

DCL Sample ID Nos.:

06-23609

The samples indicated on the following data sheet(s) were analyzed by Transmission Electron Microscopy (TEM) for asbestos using the method EPA 600/4-83-043, Method 100.1. Each sample was ultrasonically treated in its original container for 15 minutes to suspend the solids. An aliquot of this suspension was added to 100 mL of de-ionized water and filtered onto a 0.1 µm pore size polycarbonate filter. Portions of this filter were coated with carbon and mounted on grids for TEM analysis. Analysis was performed on a Philips CM-12 TEM with EDAX Genesis System providing energy dispersive X-ray analysis (EDXA) capabilities.

Results apply only to portions of samples analyzed and are tabulated on the following data sheet(s). Representative EDXA spectra and selected area electron diffraction (SAED) measurements of asbestos types detected (if any) are included and are referenced to the structure identification numbers listed on the count sheets. The limit of detection (LOD) for this method has been determined to be one asbestos fiber in the total number of grid openings analyzed. The number of openings analyzed is dependent on the sample volume filtered (4 minimum).

Angéla Sohn

Analyst

Anna Marie Ristich Section Manager

Ma Maur Ri

This report shall not be reproduced except in full, without the written approval of DataChem Laboratories.

CINCINNATI OFFICE 4388 GLENDALE-MILFORD ROAD CINCINNATI, OHIO 45242-3706 513 733-5338, FAX 513 733-5347 WEST COAST OFFICE 11 SANTA YORMA COURT NOVATO, CALIFORNIA 94945 800 280-8071, FAX 415 893-9469

Page 2 of 2 8/16/06

DataChem Laboratories Test Report Asbestos in Drinking Water by TEM

DCL Sample Set ID: 06-T-3735 Client: Sherry Laboratories Sample Location: Not Available

SAMPLE PREP DATA

ANALYSIS DATA

Date Received:	7/28/2006	Date Analyzed:	8/15/2006
Date Filtered:	7/28/2006	Magnification:	11,800 X
Time Filtered:	17:15	Calibration Constant:	$1 \text{ cm} = 0.85 \mu\text{m}$
Filter Type:	PC, 0.1 µm	EDXA Resolution:	159.4 cV
Filter Size:	47 mm	Accelerating Voltage:	100 keV
Collection Area:	1075 mm²	Camera Constant;	31.97 mm-Å

Client ID:	C06070703-01A	100-0
DCL ID:	06-23609	
Date Sampled:	7/27/06	
Time Sampled:	09:00	
Volume (L):	0.100	
No. Grid Openings Analyzed:	6	
Average Grid Opening Arca:	0.0102	
LOD (MFL):	0.18	
Ashestos Fibers ≥10 microns	The state of the s	
Chrysotile:	0 .	·
Amosite:	0	
Crocidolite:	0	
Actinolite-Tremolite:	0	
Anthophyllite:	Ò	
TOTAL ASBESTOS	Additional to the second secon	
Count:	Q	*****
Concentration (MFL):	<lod< td=""><td></td></lod<>	

ND = None Detected LOD = Limit of Detection MFL = Millions of Fibers per Liver

Angela Sohn

\nalyst

Anna Marie Ristich Section Manager

This report shall not be reproduced except in full, without the written approval of DataChem Laboratories.

				OWI	VI - Drin	king V	later E	ntal Management Branch Drinking Water	\$-	***************************************		
	Completed Form To:	Samp	le Receipt Da	ate: 07/28/	06	Labo	ratory Na	me: Underwriters Lab	oratories, Ir	nc.		,
	ana Department of	1	eview Date:	08/17/		i	-	rtification #: C-71-01				
	invironmental Management Box 7148	PWSI	t Date:	08/17/	06		ratory Re	•				
	anapolis, IN 46207-7148	ļ				Cont	act Perso	n: Jessie Varab		Phone	: 574-233-	4777
			Facility Name	e: Bastin	Logan							
	mpled: 07/27/06	- 1	Address:									
Sample	ID#: 1471271-72,74-76,78, 81	80-										
Sample	Type:	Samo	ling Site:	Kitche	n# 1							
	Routine - Annual	<u> </u>		***************************************						···		
<u> </u>	Routine - Quarterly	Comi	nents: " UL	nas demon	strated it ca	an achieve	tnese rep	port limits in reagent water, but o	annot docu	iment them i	n all sample	matrices.
_	Detection Monitoring	** Arc	clor 1016 0.	08; Aroclor	1221 2.0:	Aroclor 12	32 0.5: A	Aroclor 1242 0.3; Aroclor 1248	0 1: Aracia	r 1254 O 1· A	Araclar 1260	102
\vdash	Confirmation Sample Special Purpose							CB as decachlorobiphenyl by me				J
Locatio	•											
			l Iv	Ise I su								
····	e system chlorinate their water s information been sent to IDEN		Yes oratory?	X No	Yes	X No	ample de	echlorinated at the laboratory?	Yes	X No		
	eatment:	Iced	X Na2S2	O3	X HCI	X H2SC)4	х снасісоон	X Other	(explain)	Na2SO3	
Com-							Com-		X Gailer	(GAPILATI)		
pound ID#	Parameter	Method #	Analysis Date	D.L. * ug/L	Result ug/L	MCL ug/L	pound ID#	Parameter	Method #	Analysis Date	D.L. * ug/L	Result ug/L
	Regulated Contamina	ants						Unregulated Contamir	ants		,	
2051	Alachlor (Lasso)	525.2	08/07/06	0.1	< 0.1	2	2047	Aldicarb	531.1	08/05/06	0.5	< 0.5
2050	Atrazine	525.2	08/07/06	0.1	< 0.1	3	2044	Aldicarb Sulfone	531.1	08/05/06	0.7	< 0.7
2306	Benzo[a]pyrene	525.2	08/07/06	0.02	< 0.02	0.2	2043	Aldicarb Sulfoxide	531.1	08/05/06	0.5	< 0.5
2046	Carbofuran	531.1	08/05/06	0.9	< 0.9	40	2356	Aldrin	525.2	08/07/06	0.1	< 0.1
2059	Chlordane (alpha & gamma)	505	08/03/06	0.1	< 0.1	2	2076	Butachlor	525.2	08/07/06	0.1	< 0.1
	2,4-D	515.3	08/04/06	0.1	< 0.1	70	2021	Carbaryl.	531.1	08/05/06	0.5	< 0.5
2031	Dalapon	515.3	08/04/06	1.0	< 1.0	200	2440	Dicamba	515.3	08/04/06	0.1	< 0.1
2931	DBCP	504.1	08/05/06	0.01	< 0.01	0.2	2070	Dieldrin	525.2	08/07/06	0.1	< 0.1
2041	Dinoseb	515.3	08/04/06	0.1	< 0.1	7	2066	3-Hydroxycarbofuran	531.1	08/05/06	0.5	< 0.5
2063	2,3,7,8-TCDD (Dioxin)					3.0 e-5	2022	Methomyl	531.1	08/05/06	0.5	< 0.5
2032	Diquat	549.2	07/31/06	0.4	< 0.4	20	2045	Metolachior	525.2	08/07/06	0.1	< 0.1
2035	Di(2-ethylhexyl)adipate	525.2	08/07/06	0.6	< 0.6	400	2595	Metribuzin	525.2	08/07/06	0.1	< 0.1
2039	Di(2-ethylhexyl)phthalate	525.2	08/07/06	0.6	< 0.6	6	2077	Propachlor	525.2	08/07/06	0.1	< 0.1
2033	Endothall	548.1	08/02/06	9.0	< 9.0	100				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
2005	Endrin	525.2	08/07/06	0.01	< 0.01	2	Note: 5	Sherry Laboratories sample I.D.	# C060707	03-01A		
2946	Ethylene Dibromide (EDB)	504.1	08/05/06	0.01	< 0.01	0.05						
2034	Glyphosate (Round-up)	547	08/08/06	6.0	< 6.0	700						
2065	Heptachlor	525.2	08/07/06	0.04	< 0.04	0.4						
2067	Heptachlor epoxide	525.2	08/07/06	0.02	< 0.02	0.2						
2274	Hexachlorobenzene	525.2	08/07/06	0.1	< 0.1	1						
2042	Hexachlorocyclopentadiene	525.2	08/07/06	0.1	< 0.1	50						
2010	Lindane (gamma-BHC)	525.2	08/07/06	0.02	< 0.02	0.2						
2015	Methoxychlor	525.2	08/07/06	0.1	< 0.1	40						
2036	Oxamyl (Vydate)	531.1	08/05/06	1.0	< 1.0	200						
2326	Pentachlorophenol	515.3	08/04/06	0.04	< 0.04	1						
2040	Picloram (Tordon)	515.3	08/04/06	0.1	< 0.1	500					•	1
2383	PCBs	505	08/03/06		< **	0.5	8	This report may not be reproduce				
~ -	Simazine	525.2	08/07/06	0.07	< 0.07	4	î .	riters Laboratories, Inc. UL is actory Accreditation Program (NEL	-			
	2,4,5-TP (Silvex)	515.3	08/04/06	0.1	< 0.1	50	it	oject but has not been prepared	•		•	1
	Toxaphene	505	08/03/06	1.0	< 1.0	3			•			
	ed by: Stephere N		<u></u>		116/26	L	ру: (Jessie Yarab		Date:	8-16-	060
							(1				

Water Quality Report

South Bend Office 110 South Hill Street South Bend, IN 46617-2702 USA www.ul.com/water

tel: 1 574 233 4777 fax: 1 574 233 8207

Customer Service: 1 800 332 4345

Laboratory Report

Client:

Sherry Laboratories

Attn:

Gail Pickens

629 Washington Street, Suite 300

Columbus, IN 47201

Report:

167697

Priority:

Standard Written

Status:

Final

PWS ID:

Not Supplied

Copies

None to:

Sampling Points

- C06070703-01A

Sample Information											
UL ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time						
1471271	C06070703-01A	531.1	07/27/06 09:00	Client	07/28/06 09:45						
1471272	C06070703-01A	515.3	07/27/06 09:00	Client	07/28/06 09:45						
1471273	C06070703-01A	2120 B	07/27/06 09:00	Client	07/28/06 09:45						
1274	C06070703-01A	549.2	07/27/06 09:00	Client	07/28/06 09:45						
1275	C06070703-01A	504.1	07/27/06 09:00	Client	07/28/06 09:45						
1471276	C06070703-01A	548.1	07/27/06 09:00	Client	07/28/06 09:45						
1471277	C06070703-01A	7110 B	07/27/06 09:00	Client	07/28/06 09:45						
1471278	C06070703-01A	547	07/27/06 09:00	Client	07/28/06 09:45						
1471279	C06070703-01A	140.1	07/27/06 09:00	Client	07/28/06 09:45						
1471280	C06070703-01A	525.2	07/27/06 09:00	Client	07/28/06 09:45						
1471281	C06070703-01A	505	07/27/06 09:00	Client	07/28/06 09:45						
1471282	C06070703-01A	7500-Ra B	07/27/06 09:00	Client	07/28/06 09:45						
1471282	C06070703-01A	7500-Ra D	07/27/06 09:00	Client	07/28/06 09:45						
1471283	C06070703-01A	5540 C	07/27/06 09:00	Client	07/28/06 09:45						

lote: Foaming agent analysis performed by ELAB, Inc, Ormond Beach, Fl.

Detailed quantitative results are presented on the following pages.

Ve appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not esitate to call Jessie Varab at (574) 233-4777.

Jote: This report may not be reproduced, except in full, without written approval from Underwriters Laboratories (UL). JL is accredited by the National Environmental Laboratory Accreditation Program (NELAP). This report satisfies the requirements of your project but has not been prepared to comply with NELAP reporting requirements.

Reviewed By

Title

8(16/07) Date

8 - 16 - 06 Date

Foundation By

ient Name:

Sherry Laboratories

eport #:

167697

Page 2 of 4

Sampling Point: C06070703-01A

PWS ID: Not Supplied

	General Chemistry										
Analyte ID#	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	UL ID#		
	Odor	140.1	3 ^	1.0	< 1.0	TON		07/28/06 15:28	1471279		
	Color (Apparent)	2120 B	15 ^	5.0	< 5.0	Pt/Co units		07/28/06 15:04	1471273		

	Radionuclides											
Analyte ID#	Analyte	Method	Reg Limit	DL**	Result	Units	Preparation Date	Analyzed	UL ID#			
***	Gross Alpha	7110 B	15 *	2.9	2.5 ± 1.9	pCi/L	08/01/06 08:55	08/02/06 10:55	1471277			
13982-63-3	Radium-226	7500-Ra B		0.29	0.21 ± 0.20	pCi/L	07/31/06 10:15	08/07/06 08:52	1471282			
15262-20-1	Radium-228	7500-Ra D		0.69	0.22 ± 0.43	pCi/L	07/31/06 10:15	08/04/06 11:19	1471282			
	Combined Radium	calc.	5.		0	pCi/L	07/31/06 10:15	08/07/06 08:52	1471282			

^{*} Detection Limit (DL) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

- Control of the Cont		emi-volati	le Orga	nic Che	micals				
Analyte ID#	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	UL ID#
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	504.1	0.2 *	0.01	< 0.01	ug/L	08/04/06 10:48	08/05/06 00:56	1471275
106-93-4	1,2-Dibromoethane (EDB)	504.1	0.05 *	0.01	< 0.01	ug/L	08/04/06 10:48	08/05/06 00:56	1471275
12674-11-2	Aroclor 1016	505		0.08	< 0.08	· ug/L	08/02/06 13:33	08/03/06 01:40	1471281
11104-28-2	Aroclor 1221	505		2.0	< 2.0	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
11141-16-5	Aroclor 1232	505		0.5	< 0.5	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
5 '-21-9	Aroclor 1242	505	***	0.3	< 0.3	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
12-2-29-6	Aroclor 1248	505		0.1	< 0.1	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
11097-69-1	Aroclor 1254	505		0.1	< 0.1	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
11096-82-5	Aroclor 1260	505		0.2	< 0.2	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
57-74-9	Chlordane	505	2 *	0.1	< 0.1	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
8001-35-2	Toxaphene	505	3 *	1.0	< 1.0	ug/L	08/02/06 13:33	08/03/06 01:40	1471281
94-75-7	2,4-D	515.3	70 *	0.1	< 0.1	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
75-99-0	Dalapon	515.3	200 *	1.0	< 1.0	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
1918-00-9	Dicamba	515.3		0.1	< 0.1	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
88-85-7	Dinoseb	515.3	7 *	0.1	< 0.1	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
87-86-5	Pentachlorophenol	515.3	1 *	0.04	< 0.04	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
1918-02-1	Picloram	515.3	500 *	0.1	< 0.1	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
93-72-1	2,4,5-TP (Silvex)	515.3	50 *	0.1	< 0.1	ug/L	08/01/06 10:35	08/04/06 15:53	1471272
15972-60-8	Alachlor	525.2	2 *	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
309-00-2	Aldrin	525.2		0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
1912-24-9	Atrazine	525.2	3 *	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
50-32-8	Benzo[a]pyrene	525.2	0.2 *	0.02	< 0.02	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
58-89-9	gamma-BHC (Lindane)	525.2	0.2 *	0.02	< 0.02	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
23184-66-9	Butachlor	525.2		0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
60-57-1	Dieldrin	525.2		0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
103-23-1	Di(2-ethylhexyl)adipate	525.2	400 *	0.6	< 0.6	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
117-81-7	Di(2-ethylhexyl)phthalate	525.2	6 *	0.6	< 0.6	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
72-20-8	Endrin	525.2	2 *	0.01	< 0.01	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
76-44-8	Heptachlor	525.2	0.4 *	0.04	< 0.04	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
57-3	Heptachlor epoxide	525.2	0.2 *	0.02	< 0.02	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
118-74-1	Hexachlorobenzene	525.2	1 *	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
77-47-4	Hexachlorocyclopentadiene	525.2	50 *	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280

Client Nan	ne: ॄ Sherry Laboratories						Report #: 16	37697	
72-43-5	Methoxychlor	525.2	40 *	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
51218-45-2	Metolachlor	525.2		0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
21087-64-9	Metribuzin	525.2		0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
1019-16-7	Propachlor	525.2	***	0.1	< 0.1	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
9-4ر	Simazine	525.2	4 *	0.07	< 0.07	ug/L	08/04/06 08:32	08/07/06 23:46	1471280
116-06-3	Aldicarb	531.1		0.5	< 0.5	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
1646-88-4	Aldicarb sulfone	531.1		0.7	< 0.7	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
1646-87-3	Aldicarb sulfoxide	531.1		0.5	< 0.5	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
63-25-2	Carbaryl	531.1	***	0.5	< 0.5	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
1563-66-2	Carbofuran	531.1	40 *	0.9	< 0.9	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
16655-82-6	3-Hydroxycarbofuran	531.1		0.5	< 0.5	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
16752-77-5	Methomyl	531.1		0.5	< 0.5	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
23135-22-0	Oxamyl	531.1	200 *	1.0	< 1.0	ug/L	08/03/06 09:30	08/05/06 01:27	1471271
1071-83-6	Glyphosate	547	700 *	6.0	< 6.0	ug/L	08/07/06 18:08	08/08/06 14:40	1471278
145-73-3	Endothall	548.1	100 *	9.0	< 9.0	ug/L	08/01/06 08:50	08/02/06 00:46	1471276
85-00-7	Diquat	549.2	20 *	0.4	< 0.4	ug/L	07/31/06 10:30	07/31/06 18:47	1471274

.ny positive Aroclor result would require analysis for total PCB as decachlorobiphenyl by method 508A (MCL = 0.5 ug/L)

			Ref	erence Lab	Tests				
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	UL ID#
	Foaming Agents (MBAS)	5540 C	0.5 *	0.1	< 0.1	mg/L		07/28/06 16:05	1471283

UL has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type: Symbol: MCL

SMCL

AL

MATRIX CODES: DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PV' " OL WATER V ASTE WATER V ASTE WATER V ASTE WATER "-Please call, E	RELINQUISHED BY:(Signature) DATE TIME	RELINQUISHED BY:(Signature) PATE TIME AMPM RELINQUISHED BY:(Signature) DATE TIME	14 1471284 3/15/13/15	1471	12 1471287	10 14 11000	147/2	8 1471278	14712	14712	1171	16/14/	3 1471273	2 147/272	1/47/27/ 1767 / 1767/11	LAB Number COLLECTION DATE TIME AMPM	BILL TO:	Sherry		www.ehi.cc Shaded area for lab use only	UL) Underwriters Inc.
TURN-ARR SW = Standard Written: (15 working days) 0% IV* = Imm RV* = Rush Verbal: (5 Working days) 50% IW* = Imm RW* = Rush Written: (5 working days) 75% SP* = Weel *-Please call, Expedited service not available for all testing	RECEIVED FOR LABORATORY BY: DATE	RECEIVED BY:(Signature) RECEIVED BY:(Signature) DATE DATE	100	Foo	900	000	Odb	19	Gros.	45	284	245	(3/0/)	5/3	C06070703-01 A 53	SAMPLING SITE	COMPLIANCE MONITORING Yes No PO		SAMPLER (Signature) STA	CHAIN OF C	110 S. Hill Street South Bend, IN 46617 (800) 332-4345 fax (574) 233-8207
IURN-AROUND TIME (TAT) - SURCHARGES IV* = Immediate Verbal: (3 working days) 100% IW* =Immediate Written: (3 working days) 125% SP* = Weekend, Holiday STAT* = Less than 48 hours CALL FIGURE 100 A STAT*	CONDITIONS UPON RECEIPT (check one):	TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS On LOCALE: COC	1 0 0) I					BS A~B	8		Ç	9/	9		TEST NAME	POPULATION SERVED SOURCE WATER		STATE (of sample origin) PWS ID#	CUSTODY RECORD	
Samples received unannounced Shipping with less than 48 hours holding time UL-SBN-SHIP-F-002-05 remaining may be subject to Effective D-+e: additional charges 1	Temperature: mt 3° 2° c Upon Receipt N/A	NIS OF NON-AQUEOUS SAMPLES TO CLIENT														MATRIX	NTAINERS CODE ROUND TIME		PROJECT NAME PO#	Page of	Please print legibly. Order# 13579

Sherry Laboratories

(812) 375-0531 Columbus, Indiana 47201-629 Washington St., Suite 300

Subcontractor:

Underwriters Laboratories 110 S. Hill Street

FAX:

South Bend, Indiana 46617

C06070703-01A

Drinking Water 7/27/06 9:00:00 AM

Sample ID

Matrix

Collection Date

Bottle Type

ISDH C-7101

(800) 332-4345 (219) 233-8207

Requested Tests

COLOR MBINED_RADBROSS_ALPH/ ODOR (PHOSATE_A)

27-Jul-06

CHAN-OF-CUSTODY RECORD

Page I of I

South flymoset

Combined Cross
Addison Alpha

Relinquished by:

Comments:

Bastin Logan

Relinquished by:

(Jail Rillias

Date/Time
12750058 Received by: Amans

Received by:

7/28/06 0945

Sherry Laboratories

629 Washington St., Suite 300 (812) 375-0531 Columbus, Indiana 47201-

Subcontractor: Underwriters Laboratories

FAX:

(800) 332-4345 (219) 233-8207

GHALL-OF-CUSTODY RECORD

Page I of I

GOCONIOUS

27-Jul-06

Drinking Water Matrix 7/27/06 9:00:00 AM Collection Date **Bottle Type** MBAS Requested Tests

C06070703-01A

Sample ID

South Bend, Indiana 46617

Acct #:

ISDH C-7101

110 S. Hill Street

Comments:

standard laboratory practices. Please note our Sample ID Number on your report. Please analyze these samples as quickly as possible. After analysis, the samples do not need to be returned and can be disposed per your

Relinquished by:

Relinquished by:

28/2011 JUNES 12/2011 Date/Time

Received by Alman

Received by:

Date/Time

1/28/06 10:05

Sherry Laboratories 629 Washington St. Columbus, IN 47201 812-375-0531 Fax 812-375-0731

HERRYLaboratories

Testing Today – Protecting Tomorrow™

	•			L		-		200 N N N N N N N N N N N N N N N N N N		('	41	
	5		Chain of Custody Record		Laboratory Number	ory Nu	3 1 1 1	£	1901	7	<u>メ</u>	
ent Name-Bastin Logan Proj	<u>0</u>	Project Name-					Test	est Requested	sted			
ontact Name-Joe Paszek	(1. URBNER TOTAL	May hear to		Jer			23700				
100e-717-86-717-enoi	8 (- 1	Sampler's Signature		reserva	r \ 1ədr Contair ————————————————————————————————————	sЯ bəni	M)zinet	olypho:			Comments Remarks	nts / ks
	<u> </u>							101	OL		******	
Comp	_	Sample Identifi	Sample Identification / Description						PO		The same of the same.	
				\							Subcontracted	acted
											ests Sta	<i>1</i> A
											1	
											1	***************************************
	{						-				1	
							<u> </u>				T	
											T	
						,					UPS / FedEx	JEX JEX
											Hand Mail	laii y
therry Lab	Lat	samples submitted to Sherry Laboratories for analysis are accepted the client submitting the camples. Sherry I aboratories are accepted.	ed on a cust	odial basis		Ownership of the material remains	materia	remai	 	P.O. Number)	
2	4	כפי סווכווין במטטומני	CI 111611 CI	פוחום חומ	etuin unuseu sampie pomons.	ornoris.						
2	원	Received by: (Signature)	ρατε /21/00/	Time (2:55	Relinquíshed by: (Signature)	Signature)	Rec	eived by	Received by (Signature)	(92	Date	Time
8	₾	Received by: (Signature)	Date .	Time Re	Relinquished by: (Signature)	Signature)	Rec	Received by	webas) ger	Sally to	Total Till	12 /A
Matrix Codes	က္က	10/41 2011	Container Types	Shipping	Shipping Conditions	Which	Which Regulations Apply	Rions A	Vldd)		<u> </u>
SL = Sludge	Ĭ	SL = Sludge	G = Glass	/ /ced Temp.	emp / 0	POT&	<u></u> 5	Drinking Water Other:	Vater	- nank-	I nank-you tor using snerry Laboratories	Snerry
Oil OI	0	OT = Other	P = Plastic	Ambient	- 1	NPDES				••••••		
				000000000000000000000000000000000000000	***************************************		-	-				,

HERRYLaboratories

Sherry Laborratories 629 Washington St. Columbus, IN 47201 812-375-0531	Laboratory Number (() () () () ()	Test Requested	Preservative Mumber / Type of Container Matrix Code Fluoride-NO3-NO2 Pabestos OC Metals&Na L-PH-TDS-Temp. L-PH-TDS-Temp. Cyanide DOC Metals&Na OC Metals&Na Cyanide TTHM-VOC-624	iced P D W X	HNO3 P D W X	NaOH P D W X	iced P D W X	Iced P D W X	Iced G D W X	lced P D W X	HCI G D W X UPS/FedEx	Appende / Snerry	ted on a custodial basis only. Ownership of the material remains P.O. Number s the right to return unused sample nortions	Relinquished by: (Signature) Received by (Signature) Date Time	e Relinquished by: (Signature) Received by Lab (Signature) Date Time Time	ich Regulations Apply	KCRA Drinking Water I nank-you for using Sherry Ked Temp. Other: Laboratories Ambient NPDES	٦
HERRALABORATORIES Testing Today - Projection Towards	ageofChain of Custody Record	lient Name-Bastin Logan Project Name-	ontact Name- Joe Paszek Sampler's Signature none-	×	03 X HN	OS X Na	×	×	×	×	×		I samples submitted to Sherry Laboratories for analysis are accepted on a custodial basis only. In the client submitting the samples. Sherry Laboratories reserves the right to return unitsed sa		Received by: (Signature)	Watrix Codes Container Types SI	SL = Sludge G = Glass = Oil OT = Other P = Plastic	

Appendix E – Boring Locations and Analyses	

Boring Locations and Analyses

			F	ormer AEI	P Tanner's	Creek Ger	nerating St	ation						
Boring No.	Location	VOC 8260/5035	PAH by 8270 SIM	SVOC by 8270	PCB by 8082 (0-2 FT-BGS ONLY)	Metals (Extended List)	Metals RCRA 8	RCRA 8 Wetals plus Barium, Lithium, and Molybdenum	Hexachrome by 7196 (Soil Only)	Fluoride	Radium	Dioxins and Furans (0-2 ft-bgs ONLY)	Duplicate Sample	MS/MSD Sample
B-1	Gibbco / Coal Staging Area	X	ш.	X	_	X	_		X	X	X		SOIL	
B-2	Gibbco / Coal Staging Area	X		X		X			X	X	X		OOIL	SOIL
B-3	Gibbco / Coal Staging Area	X		X	Х	X			X	X	X			GW
B-4	Gibbco / Coal Staging Area	X		X		X			X	X	X			GVV
B-5	Gibbco / Coal Staging Area	X		X	Х	X			X	X	X	Х		
B-6	Gibbco / Coal Staging Area	X		X		X			X	X	X			
B-7	Gibbco / Coal Staging Area	X		X		X			X	X	X			
B-8	Gibbco / Coal Staging Area	X		X			Х						SOIL	
B-9	Diesel AST	X		X	Х		X						OOIL	
B-10	Diesel AST	X		X	X		X							
B-11	Diesel AST	X		Х			X							
B-12	Diesel AST	X		Х			X					Х	SOIL	
B-13	Demo Debris Area	X	1	X		1	X		1				T	1
B-14	Demo Debris Area	X	1	X		1	X		1			Х	1	SOIL
B-15	Demo Debris Area	X		X			X					1	İ	T
B-16	Demo Debris Area	X		Х			X							
B-17	AST	Х		Х			Х							SOIL
B-18	Demo Debris Area	Х		Х			Х					Х		
B-19	Metal Waste Cleaning AST	X		Х			Х							
B-20	Metal Waste Cleaning AST	Х		Х			Х					Х		
B-21	Metal Waste Cleaning AST	Х		Х	Х		Х							
B-22	Metal Waste Cleaning AST	Х		Х			Х							
B-23	Near Bottom Ash Pond	X		Х		Х			Х	Х	X			
B-24	Near Bottom Ash Pond	X		Х		X			Х	Х	X			
B-25	Near Bottom Ash Pond	X		Х		Х			Х	Х	X	X		
B-26	Near Bottom Ash Pond	Х		Х		Х			Х	X	Х			
B-27	Main Ash Pond	Х		Х		X			Х	X	X			
B-28	Main Ash Pond	X		Х		Х			Х	X	Х			
B-29	Main Ash Pond	X		Х		X			Х	Х	Х	Х		
B-30	Main Ash Pond	Х		Х		Х			Х	Х	Х			
B-31	Main Ash Pond	X		X		X			X	X	X	Х		
B-32	Main Ash Pond	X		X		X			X	X	X			
B-33	Main Ash Pond	X		X	.,	X			X	X	X		0011	
B-34	Main Ash Pond	X		X	X	X			X	X	X		SOIL	0011
B-35	Main Ash Pond	X		X	Х	X			X	X	X			SOIL
B-36 B-37	Main Ash Pond	X		X		X			X	X	X			
B-38	Main Ash Pond Main Ash Pond	X		X	Х	X			X	X	X	Х	GW	
B-39	Fly Ash Pond	X	Х	^	^	^		Х	^	^	^		GW	SOIL
B/TMW-40	Fly Ash Pond	X	X					X						OOIL
Wastewater	Ash Pond/Landfill Outfall	X		Х	Х	Х				Х	Х			
B-41	Fly Ash Pond	X	Х					Х		- / -				
B-42	Fly Ash Pond	X	X					Х						
B/TMW-43	Fly Ash Pond	X	X					X				1	İ	
B-44	Fly Ash Pond	Х	Х					Х						
B/TMW-45	Fly Ash Pond	Х	Х					Х						
B-46	Fly Ash Pond	Х	Х					Х						
B/TMW-47	Fly Ash Pond	Х	Х					Х						
B-48	Fly Ash Pond	Х	Х					Х					SOIL	
B-49	Ash Landfill	X	X					X						
B/TMW-50	Ash Landfill	X	Х					X						
B-51	Ash Landfill	X	X	1				X			1			
B/TMW-52	Ash Landfill	X	X	1			-	X			-	-	-	
B-53	Northeast of Fly Ash Pond	X	X	1			-	X			-	-	-	
B-54 B/TMW-55	Northeast of Fly Ash Pond	X	X	}	1	-	-	X	-		1	1	1	-
B-/TMW56	Northeast of Fly Ash Pond Northeast of Fly Ash Pond	X	X	-	-	-	 	X	-		-			-
B-/TMW56 B/TMW-57	Northeast of Fly Ash Pond Northeast of Fly Ash Pond	X	X					X			-			
B-58	Northeast of Fly Ash Pond	X	X	1	†			X					SOIL	
B/TMW-59	Northeast of Fly Ash Pond	X	X					X					JOIL	
B-60	Main Plant Building Area	X	X					X						
B-61	Main Plant Building Area	X	X					X						
B-62	Main Plant Building Area	X	X					X				1	İ	
B/TMW-63	Main Plant Building Area	X	X		Х			X				1	İ	SOIL
B-64	Main Plant Building Area	X	X		X			X						
	Near Coal Pond NE of Plant	Х												eO!!
B-65	Buidling Area	Λ	Х		Х			Х						SOIL
B/TMW-66	Near Coal Pond NE of Plant	Х	Х		Х			Х					SOIL	
	Buidling Area													
B/TMW-67	Main Plant Building Area	Х	Х		Х			Х					GW	
B-68	Near Coal Pond NE of Plant	Х	Х		Х			Х						
L	Buidling Area	i	l	1	<u> </u>	l	l	<u> </u>	l		1	l	l	l .

B-69	Near Coal Pond NE of Plant Buidling Area	Х	Х	Х		Х				
B-70	Near Coal Pond NE of Plant Buidling Area	Х	Х	Х		Х			SOIL	
B/TMW-71	Main Plant Building Area	Х	Х	X		Χ				SOIL
B/TMW-72	Main Plant Building Area	Х	Х	X		Χ				
B-73	Main Plant Building Area	Х	Х	X		Χ				
B/TMW-74	Main Plant Building Area	Х	Х	X		Х				
B-75	Main Plant Building Area	Х	Х	X		Χ				
B-76	Fly Ash Pond				X					
B-77	Fly Ash Pond				X					
B-78	Fly Ash Pond				X					
B-79	Main Plant Building Area	Х	Х	X	X					
B-80	Main Plant Building Area	Х	Х	X	X					
B-81	Main Plant Building Area	Х	Х	X	X				GW	
B-82	Main Plant Building Area	Х	Х	X	X				SOIL	
B-83	Main Plant Building Area	Х	Х	X	X					GW
B-84	Main Plant Building Area	Χ	Х	X	X					
B-85	Main Plant Building Area	Х	Х	Х	X	•			•	
B-86	Main Plant Building Area	Х	Х	X	X					SOIL
B-87	Main Plant Building Area	Х	Х	Х	X	•			•	
B-88	Main Plant Building Area	Χ	Х	X	X					

Dioxins and Furans for soils only

GW Well 42 total

Due to laboratory maximum detection limits exceeding IDEM RCG Screening Levels for water analysis, Hexachromium (Cr. **) will not be measured in the groundwater